1887

Abstract

A novel bacterial strain, designated THG-S11.7, was isolated from garden soil in Incheon, South Korea. Cells of the strain were Gram-stain-positive, aerobic, non-motile cocci, and were catalase- and oxidase-positive. Colonies of the strain were white. Strain THG-S11.7 grew optimally at 28 °C, at pH 7.0 and in the presence of 2.0 % NaCl. 16S rRNA gene sequence analysis indicated that the strain was a member of the genus . Strain THG-S11.7 showed a 16S rRNA gene sequence similarity of 98.2 % to KCTC 19054, 98.0 % to KCTC 19600, 97.9 % to KCTC 19799, 97.8 % to KCTC 047BP, 97.6 % to KACC 20613, 97.5 % to KACC 20620 and 97.0 % to KCTC 19135. DNA–DNA relatedness values between strain THG-S11.7 and the closest phylogenetic neighbours were below 45.0 % and the DNA G+C content of strain THG-S11.7 was 72.2 mol%. Strain THG-S11.7 was characterized chemotaxonomically as having -diaminopimelic acid in the cell-wall peptidoglycan and menaquinone MK-8(H) as the predominant isoprenoid quinone. The major phospholipid was determined to be diphosphatidylglycerol. The major cellular fatty acids of strain THG-S11.7 were iso-C, C and iso-C. Based on the phenotypic, genotypic and phylogenetic analyses, it is proposed that the isolate represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is THG-S11.7 ( = KCTC 39607 = CCTCC AB 2015297).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000730
2016-01-01
2020-08-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/371.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000730&mimeType=html&fmt=ahah

References

  1. Alias-Villegas C., Jurado V., Laiz L., Miller A. Z., Saiz-Jimenez C.. 2013; Nocardioides albertanoniae sp. nov., isolated from Roman catacombs. Int J Syst Evol Microbiol63:1280–1284 [CrossRef][PubMed]
    [Google Scholar]
  2. Chou J.-H., Cho N.-T., Arun A. B., Young C. C., Chen W.-M.. 2008; Nocardioides fonticola sp. nov., a novel actinomycete isolated from spring water. Int J Syst Evol Microbiol58:1864–1868 [CrossRef][PubMed]
    [Google Scholar]
  3. Christensen W. B.. 1946; Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol52:461–466[PubMed]
    [Google Scholar]
  4. Collins M. D., Cockcroft S., Wallbanks S.. 1994; Phylogenetic analysis of a new LL-diaminopimelic acid-containing coryneform bacterium from herbage, Nocardioides plantarum sp. nov. Int J Syst Bacteriol44:523–526 [CrossRef][PubMed]
    [Google Scholar]
  5. Cui Y. S., Lee S. T., Im W. T.. 2009; Nocardioides ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol59:3045–3050 [CrossRef][PubMed]
    [Google Scholar]
  6. Cui Y., Woo S. G., Lee J., Sinha S., Kang M. S., Jin L., Kim K. K., Park J., Lee M., Lee S. T.. 2013; Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. Int J Syst Evol Microbiol63:3727–3732 [CrossRef][PubMed]
    [Google Scholar]
  7. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. 2008; Nocardioides koreensis sp. nov., Nocardioides bigeumensis sp. nov. and Nocardioides agariphilus sp. nov., isolated from soil from Bigeum Island, Korea. Int J Syst Evol Microbiol58:2292–2296 [CrossRef][PubMed]
    [Google Scholar]
  8. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. 2009; Nocardioides sediminis sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol59:280–284 [CrossRef][PubMed]
    [Google Scholar]
  9. Deng S., Chang X., Zhang Y., Ren L., Jiang F., Qu Z., Peng F.. 2015; Nocardioides antarcticus sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol65:2615–2621 [CrossRef]
    [Google Scholar]
  10. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  11. Fan X., Qiao Y., Gao X., Zhang X.-H.. 2014; Nocardioides pacificus sp. nov., isolated from deep sub-seafloor sediment. Int J Syst Evol Microbiol64:2217–2222 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  14. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  15. Gillis M., De Ley J., De Cleene M.. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem12:143–153 [CrossRef][PubMed]
    [Google Scholar]
  16. Gomori G.. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol1:138–146 [CrossRef]
    [Google Scholar]
  17. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  18. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  19. Kim K.-H., Roh S. W., Chang H.-W., Nam Y.-D., Yoon J.-H., Jeon C. O., Oh H.-M., Bae J.-W.. 2009; Nocardioides basaltis sp. nov., isolated from black beach sand. Int J Syst Evol Microbiol59:42–47 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721[PubMed][CrossRef]
    [Google Scholar]
  21. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  23. Kubota M., Kawahara K., Sekiya K., Uchida T., Hattori Y., Futamata H., Hiraishi A.. 2005; Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. Syst Appl Microbiol28:165–174 [CrossRef][PubMed]
    [Google Scholar]
  24. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–176Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  25. Lee S. D.. 2007; Nocardioides furvisabuli sp. nov., isolated from black sand. Int J Syst Evol Microbiol57:35–39 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee D. W., Hyun C. G., Lee S. D.. 2007; Nocardioides marinisabuli sp. nov., a novel actinobacterium isolated from beach sand. Int J Syst Evol Microbiol57:2960–2963 [CrossRef][PubMed]
    [Google Scholar]
  27. Lin S.-Y., Wen C.-Z., Hameed A., Liu Y.-C., Hsu Y.-H., Shen F.-T., Lai W.-A., Young C.-C.. 2015; Nocardioides echinoideorum sp. nov., isolated from sea urchins (Tripneustes gratilla). Int J Syst Evol Microbiol65:1953–1958 [CrossRef][PubMed]
    [Google Scholar]
  28. McConaughy B. L., Laird C. D., McCarthy B. J.. 1969; Nucleic acid reassociation in formamide. Biochemistry8:3289–3295 [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  30. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  31. Moore D. D., Dowhan D.. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp2–11Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  32. O'Donnell A. G., Goodfellow M., Minnikin D. E.. 1982; Lipids in the classification of Nocardioides: reclassification of Arthrobacter simplex (Jensen) lochhead in the genus Nocardioides (Prauser) emend. O'Donnell et al. as Nocardioides simplex comb. nov. Arch Microbiol133:323–329 [CrossRef][PubMed]
    [Google Scholar]
  33. Park S. C., Baik K. S., Kim M. S., Chun J., Seong C. N.. 2008; Nocardioides dokdonensis sp. nov., an actinomycete isolated from sand sediment. Int J Syst Evol Microbiol58:2619–2623 [CrossRef][PubMed]
    [Google Scholar]
  34. Prauser H.. 1976; Nocardioides, a new genus of the order Actinomycetales . Int J Syst Bacteriol26:58–65 [CrossRef]
    [Google Scholar]
  35. Reichenbach H.. 1992; The order Cytophagales . In The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn.vol 4 pp3631–3675Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;
    [Google Scholar]
  36. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  37. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  38. Schippers A., Schumann P., Spröer C.. 2005; Nocardioides oleivorans sp. nov., a novel crude-oil-degrading bacterium. Int J Syst Evol Microbiol55:1501–1504 [CrossRef][PubMed]
    [Google Scholar]
  39. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  40. Song G. C., Yasir M., Bibi F., Chung E. J., Jeon C. O., Chung Y. R.. 2011; Nocardioides caricicola sp. nov., an endophytic bacterium isolated from a halophyte, Carex scabrifolia Steud. Int J Syst Evol Microbiol61:105–109 [CrossRef][PubMed]
    [Google Scholar]
  41. Stabili L., Gravili C., Tredici S. M., Piraino S., Talà A., Boero F., Alifano P.. 2008; Epibiotic Vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol56:625–636 [CrossRef][PubMed]
    [Google Scholar]
  42. Stackebrandt E, Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  43. Sultanpuram V. R., Mothe T., Mohammed F.. 2015; Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie van Leeuwenhoek107:1599–1606 [CrossRef][PubMed]
    [Google Scholar]
  44. Suzuki K., Komagata K.. 1983; Pimelobacter gen. nov., a new genus of coryneform bacteria with ll-diaminopimelic acid in the cell wall. J Gen Appl Microbiol29:59–71 [CrossRef]
    [Google Scholar]
  45. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  46. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  47. Tóth E. M., Kéki Z., Homonnay Z. G., Borsodi A. K., Márialigeti K., Schumann P.. 2008; Nocardioides daphniae sp. nov., isolated from Daphnia cucullata (Crustacea: Cladocera). Int J Syst Evol Microbiol58:78–83 [CrossRef][PubMed]
    [Google Scholar]
  48. Tuo L., Dong Y.-P., Habden X., Liu J.-M., Guo L., Liu X.-F., Chen L., Jiang Z.-K., Liu S.-W., other authors. 2015; Nocardioides deserti sp. nov., an actinobacterium isolated from desert soil. Int J Syst Evol Microbiol65:1604–1610 [CrossRef][PubMed]
    [Google Scholar]
  49. Uchida K., Kudo T., Suzuki K. I., Nakase T.. 1999; A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  50. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  51. Yi H., Chun J.. 2004a; Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol54:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  52. Yi H., Chun J.. 2004b; Nocardioides aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol54:2151–2154 [CrossRef][PubMed]
    [Google Scholar]
  53. Yoon J. H., Cho Y. G., Lee S. T., Suzuki K., Nakase T., Park Y. H.. 1999; Nocardioides nitrophenolicus sp. nov., a p-nitrophenol-degrading bacterium. Int J Syst Bacteriol49:675–680 [CrossRef][PubMed]
    [Google Scholar]
  54. Yoon J. H., Kim I. G., Lee M. H., Lee C. H., Oh T. K.. 2005a; Nocardioides alkalitolerans sp. nov., isolated from an alkaline serpentinite soil in Korea. Int J Syst Evol Microbiol55:809–814 [CrossRef][PubMed]
    [Google Scholar]
  55. Yoon J. H., Kim I. G., Lee M. H., Oh T. K.. 2005b; Nocardioides kribbensis sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol55:1611–1614 [CrossRef][PubMed]
    [Google Scholar]
  56. Yoon J.-H., Lee C.-H., Oh T.-K.. 2005c; Nocardioides dubius sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol55:2209–2212 [CrossRef][PubMed]
    [Google Scholar]
  57. Yoon J. H., Lee C. H., Oh T. K.. 2006a; Nocardioides lentus sp. nov., isolated from an alkaline soil. Int J Syst Evol Microbiol56:271–275 [CrossRef][PubMed]
    [Google Scholar]
  58. Yoon J. H., Lee J. K., Jung S. Y., Kim J. A., Kim H. K., Oh T. K.. 2006b; Nocardioides kongjuensis sp. nov., an N-acylhomoserine lactone-degrading bacterium. Int J Syst Evol Microbiol56:1783–1787 [CrossRef][PubMed]
    [Google Scholar]
  59. Yoon J. H., Kang S. J., Park S., Kim W., Oh T. K.. 2009; Nocardioides caeni sp. nov., isolated from wastewater. Int J Syst Evol Microbiol59:2794–2797 [CrossRef][PubMed]
    [Google Scholar]
  60. Zhang D. C., Schumann P., Redzic M., Zhou Y. G., Liu H. C., Schinner F., Margesin R.. 2012; Nocardioides alpinus sp. nov., a psychrophilic actinomycete isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol62:445–450 [CrossRef][PubMed]
    [Google Scholar]
  61. Zhang D. F., Zhong J. M., Zhang X. M., Jiang Z., Zhou E. M., Tian X. P., Zhang S., Li W. J.. 2014; Nocardioides nanhaiensis sp. nov., an actinobacterium isolated from a marine sediment sample. Int J Syst Evol Microbiol64:2718–2722 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000730
Loading
/content/journal/ijsem/10.1099/ijsem.0.000730
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error