1887

Abstract

Two novel cell-wall-less, acidophilic, mesophilic, organotrophic and facultatively anaerobic archaeal strains were isolated from acidic streamers formed on the surfaces of copper-ore-containing sulfidic deposits in south-west Spain and North Wales, UK. Cells of the strains varied from 0.1 to 2 μm in size and were pleomorphic, with a tendency to form filamentous structures. The optimal pH and temperature for growth for both strains were 1.0–1.2 and 37–40 °C, with the optimal substrates for growth being beef extract (3 g l) for strain S5 and beef extract with tryptone (3 and 1 g l, respectively) for strain PM4. The lipid composition was dominated by intact polar lipids consisting of a glycerol dibiphytanyl glycerol tetraether (GDGT) core attached to predominantly glycosidic polar headgroups. In addition, free GDGT and small relative amounts of intact and core diether lipids were present. Strains S5 and PM4 possessed mainly menaquinones with minor fractions of thermoplasmaquinones. The DNA G+C content was 37.3 mol% in strain S5 and 37.16 mol% for strain PM4. A similarity matrix of 16S rRNA gene sequences (identical for both strains) showed their affiliation to the order , with 73.9–86.3 % identity with sequences from members of the order with validly published names. The average nucleotide identity between genomes of the strains determined was 98.75 %, suggesting, together with the 16S rRNA gene-based phylogenetic analysis, that the strains belong to the same species. A novel family, fam. nov., genus gen. nov. and species sp. nov. are proposed based on the phylogenetic, chemotaxonomic analyses and physiological properties of the two isolates, S5 and PM4 ( = JCM 30641 = VKM B-2940). The type strain of is S5 ( = JCM 30642 = VKM B-2941).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000725
2016-01-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/332.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000725&mimeType=html&fmt=ahah

References

  1. Baker B. J., Tyson G. W., Webb R. I., Flanagan J., Hugenholtz P., Allen E. E., Banfield J. F.. 2006; Lineages of acidophilic archaea revealed by community genomic analysis. Science314:1933–1935 [CrossRef][PubMed]
    [Google Scholar]
  2. Boyd E. S., Pearson A., Pi Y., Li W. J., Zhang Y. G., He L., Zhang C. L., Geesey G. G.. 2011; Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens . Extremophiles15:59–65 [CrossRef][PubMed]
    [Google Scholar]
  3. Darland G., Brock T. D., Samsonoff W., Conti S. F.. 1970; A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science170:1416–1418 [CrossRef][PubMed]
    [Google Scholar]
  4. Darriba D., Taboada G. L., Doallo R., Posada D.. 2012; jModelTest 2: more models, new heuristics and parallel computing. Nat Methods9:772[CrossRef]
    [Google Scholar]
  5. Dawson K. S., Freeman K. H., Macalady J. L.. 2012; Molecular characterization of core lipids from halophilic archaea grown under different salinity conditions. Org Geochem48:1–8 [CrossRef]
    [Google Scholar]
  6. Edgar R. C.. 2004; muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  7. Elling F. J., Becker K. W., Könneke M., Schröder J. M., Kellermann M. Y., Thomm M., Hinrichs K.-U.. 2015; Respiratory quinones in Archaea: phylogenetic distribution and application as biomarkers in the marine environment. Environ Microbiol (in press) [PubMed]
    [Google Scholar]
  8. Golyshina O. V.. 2011; Environmental, biogeographic, and biochemical patterns of archaea of the family Ferroplasmaceae . Appl Environ Microbiol77:5071–5078 [CrossRef][PubMed]
    [Google Scholar]
  9. Golyshina O. V., Pivovarova T. A., Karavaiko G. I., Kondratéva T. F., Moore E. R., Abraham W. R., Lünsdorf H., Timmis K. N., Yakimov M. M., Golyshin P. N.. 2000; Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol50:997–1006 [CrossRef][PubMed]
    [Google Scholar]
  10. Golyshina O. V., Yakimov M. M., Lünsdorf H., Ferrer M., Nimtz M., Timmis K. N., Wray V., Tindall B. J., Golyshin P. N.. 2009; Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov. Int J Syst Evol Microbiol59:2815–2823 [CrossRef][PubMed]
    [Google Scholar]
  11. Gonthier I., Rager M. N., Metzger P., Guezennec J., Largeau C.. 2001; A di-O-dihydrogeranylgeranyl glycerol from Thermococcus S 557, a novel ether lipid, and likely intermediate in the biosynthesis of diethers in Archaea. Tetrahedron Lett42:2795–2797 [CrossRef]
    [Google Scholar]
  12. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  13. Hafenbradl D., Keller M., Thiericke R., Stetter K. O.. 1993; A novel unsaturated archaeal ether core lipid from the hyperthermophile Methanopyrus kandleri . Syst Appl Microbiol16:165–169 [CrossRef]
    [Google Scholar]
  14. Itoh T., Yoshikawa N., Takashina T.. 2007; Thermogymnomonas acidicola gen. nov., sp. nov., a novel thermoacidophilic, cell wall-less archaeon in the order Thermoplasmatales, isolated from a solfataric soil in Hakone, Japan. Int J Syst Evol Microbiol57:2557–2561 [CrossRef][PubMed]
    [Google Scholar]
  15. Kates M.. 1993; Biology of halophilic bacteria, part II. Membrane lipids of extreme halophiles: biosynthesis, function and evolutionary significance. Experientia49:1027–1036 [CrossRef][PubMed]
    [Google Scholar]
  16. Koga Y., Morii H.. 2005; Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Biosci Biotechnol Biochem69:2019–2034 [CrossRef][PubMed]
    [Google Scholar]
  17. Méndez-García C., Mesa V., Sprenger R. R., Richter M., Diez M. S., Solano J., Bargiela R., Golyshina O. V., Manteca Á., other authors. 2014; Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME J8:1259–1274 [CrossRef][PubMed]
    [Google Scholar]
  18. Méndez-García C., Peláez A. I., Mesa V., Sánchez J., Golyshina O. V., Ferrer M.. 2015; Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol6:475[PubMed]
    [Google Scholar]
  19. Nichols D. S., Miller M. R., Davies N. W., Goodchild A., Raftery M., Cavicchioli R.. 2004; Cold adaptation in the Antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J Bacteriol186:8508–8515 [CrossRef][PubMed]
    [Google Scholar]
  20. Schleper C., Puehler G., Holz I., Gambacorta A., Janekovic D., Santarius U., Klenk H. P., Zillig W.. 1995; Picrophilus gen. nov., fam. nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J Bacteriol177:7050–7059[PubMed]
    [Google Scholar]
  21. Segerer A., Langworthy T. A., Stetter K. O.. 1988; Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol10:161–171 [CrossRef]
    [Google Scholar]
  22. Shimada H., Shida Y., Nemoto N., Oshima T., Yamagishi A.. 2001; Quinone profiles of Thermoplasma acidophilum HO-62. J Bacteriol183:1462–1465 [CrossRef][PubMed]
    [Google Scholar]
  23. Shimada H., Nemoto N., Shida Y., Oshima T., Yamagishi A.. 2002; Complete polar lipid composition of Thermoplasma acidophilum HO-62 determined by high-performance liquid chromatography with evaporative light-scattering detection. J Bacteriol184:556–563 [CrossRef][PubMed]
    [Google Scholar]
  24. Shimada H., Nemoto N., Shida Y., Oshima T., Yamagishi A.. 2008; Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol190:5404–5411 [CrossRef][PubMed]
    [Google Scholar]
  25. Sturt H. F., Summons R. E., Smith K., Elvert M., Hinrichs K.-U.. 2004; Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry — new biomarkers for biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom18:617–628 [CrossRef][PubMed]
    [Google Scholar]
  26. Swain M., Brisson J.-R., Sprott G. D., Cooper F. P., Patel G. B.. 1997; Identification of β-l-gulose as the sugar moiety of the main polar lipid Thermoplasma acidophilum . Biochim Biophys Acta1345:56–64 [CrossRef][PubMed]
    [Google Scholar]
  27. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  28. Wang X., Lv B., Cai G., Fu L., Wu Y., Wang X., Ren B., Ma H.. 2012; A proton shelter inspired by the sugar coating of acidophilic archaea. Sci Rep2:892 [CrossRef][PubMed]
    [Google Scholar]
  29. Yelton A. P., Comolli L., Justice N. B., Castelle C., Denef V. J., Thomas B. C., Banfield J. F.. 2013; Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics14:485 [CrossRef][PubMed]
    [Google Scholar]
  30. Zhu C., Lipp J. S., Wörmer L., Becker K. W., Schröder J., Hinrichs K.-U.. 2013; Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography-mass spectrometry protocol. Org Geochem65:53–62 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000725
Loading
/content/journal/ijsem/10.1099/ijsem.0.000725
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error