1887

Abstract

An aerobic, Gram-stain-negative, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped, pink-pigmented bacterium, designated strain R49, was isolated from soil. Flexirubin-type pigments were absent. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain R49 formed a lineage within the family of the phylum that was distinct from the most closely related genera (91.98–93.85 % sequence similarity), (88.69 %) and (84.79–85.81 %). The major isoprenoid quinone was menaquinone-7 (MK-7) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were summed feature 3 (Cω7 and/or Cω6), iso-C, Cω5, C and iso-C 3-OH. The DNA G+C content of strain R49 was 53.9 mol%. On the basis of phenotypic, genotypic and phylogenetic analysis, strain R49 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is R49 ( = KEMB 9005-318 = KACC 18395 = JCM 30685).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000714
2016-01-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/308.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000714&mimeType=html&fmt=ahah

References

  1. Baik K. S., Kim M. S., Kim E. M., Kim H. R., Seong C. N.. 2007; Dyadobacter koreensis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol57:1227–1231 [CrossRef][PubMed]
    [Google Scholar]
  2. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp309–329Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Card G. L.. 1973; Metabolism of phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin of Bacillus stearothermophilus . J Bacteriol114:1125–1137[PubMed]
    [Google Scholar]
  4. Chaturvedi P., Reddy G. S., Shivaji S.. 2005; Dyadobacter hamtensis sp. nov., from Hamta glacier, located in the Himalayas, India. Int J Syst Evol Microbiol55:2113–2117 [CrossRef][PubMed]
    [Google Scholar]
  5. Chelius M. K., Triplett E. W.. 2000; Dyadobacter fermentans gen. nov., sp. nov., a novel gram-negative bacterium isolated from surface-sterilized Zea mays stems. Int J Syst Evol Microbiol50:751–758 [CrossRef][PubMed]
    [Google Scholar]
  6. Chelius M. K., Henn J. A., Triplett E. W.. 2002; Runella zeae sp. nov., a novel gram-negative bacterium from the stems of surface-sterilized Zea mays . Int J Syst Evol Microbiol52:2061–2063[PubMed]
    [Google Scholar]
  7. Chen L., Jiang F., Xiao M., Dai J., Kan W., Fang C., Peng F.. 2013; Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol63:1616–1620 [CrossRef][PubMed]
    [Google Scholar]
  8. Cheng H. R., Jiang N.. 2006; Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnol Lett28:55–59 [CrossRef][PubMed]
    [Google Scholar]
  9. Chun J., Kang J. Y., Joung Y., Kim H., Joh K., Jahng K. Y.. 2013; Dyadobacter jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol63:1788–1792 [CrossRef][PubMed]
    [Google Scholar]
  10. Davies B. H.. 1976; Chemistry and Biochemistry of Plant Pigments London: Academic Press;
    [Google Scholar]
  11. Doetsch R. N.. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp21–33Edited by Gerhardt P.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Dong Z., Guo X., Zhang X., Qiu F., Sun L., Gong H., Zhang F.. 2007; Dyadobacter beijingensis sp. nov., isolated from the rhizosphere of turf grasses in China. Int J Syst Evol Microbiol57:862–865 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  15. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  16. Frank J. A., Reich C. I., Sharma S., Weisbaum J. S., Wilson B. A., Olsen G. J.. 2008; Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol74:2461–2470 [CrossRef][PubMed]
    [Google Scholar]
  17. Glöckner F. O., Fuchs B. M., Amann R.. 1999; Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol65:3721–3726[PubMed]
    [Google Scholar]
  18. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  19. Kang J. Y., Chun J., Jahng K. Y.. 2013a; Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol63:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  20. Kang J. Y., Chun J., Choi A., Cho J. C., Jahng K. Y.. 2013b; Nibrella saemangeumensis gen. nov., sp. nov. and Nibrella viscosa sp. nov., novel members of the family Cytophagaceae, isolated from seawater. Int J Syst Evol Microbiol63:4508–4514 [CrossRef][PubMed]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Kirchman D. L.. 2002; The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol Ecol39:91–100[PubMed]
    [Google Scholar]
  24. Komagata K., Suzuki K.. 1987; Lipids and cell wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  25. Lang E., Lapidus A., Chertkov O., Brettin T., Detter J. C., Han C., Copeland A., Glavina Del Rio T., Nolan M., other authors. 2009; Complete genome sequence of Dyadobacter fermentans type strain (NS114T). Stand Genomic Sci1:133–140 [CrossRef][PubMed]
    [Google Scholar]
  26. Larkin J. M., Williams P. M.. 1978; Runella slithyformis gen. nov., sp. nov., a curved nonflexible, pink bacterium. Int J Syst Bacteriol28:32–36[CrossRef]
    [Google Scholar]
  27. Lee M., Woo S. G., Park J., Yoo S. A.. 2010; Dyadobacter soli sp. nov., a starch-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol60:2577–2582 [CrossRef][PubMed]
    [Google Scholar]
  28. Liu Q. M., Im W. T., Lee M., Yang D. C., Lee S. T.. 2006; Dyadobacter ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol56:1939–1944 [CrossRef][PubMed]
    [Google Scholar]
  29. Lu S., Lee J. R., Ryu S. H., Chung B. S., Choe W. S., Jeon C. O.. 2007; Runella defluvii sp. nov., isolated from a domestic wastewater treatment plant. Int J Syst Evol Microbiol57:2600–2603 [CrossRef][PubMed]
    [Google Scholar]
  30. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H.. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis19:554–568 [CrossRef][PubMed]
    [Google Scholar]
  31. Ludwig W., Euzéby J., Whitman W. B.. 2011; Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes., Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Bergey's Manual of Systematic Bacteriology, 4 2nd edn. pp21–24Edited by Whitman W.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  32. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  33. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  34. Nakagawa Y.. 2011; Family I. Cytophagaceae Stainer 1940, 630 AL. In Bergey's Manual of Systematic Bacteriology, 4 2nd edn. pp371–423Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B.. New York: Springer;
    [Google Scholar]
  35. Naziri D., Hamidi M., Hassanzadeh S., Tarhriz V., Maleki Zanjani B., Nazemyieh H., Hejazi M. A., Hejazi M. S.. 2014; Analysis of carotenoid production by Halorubum sp. TBZ126; an extremely halophilic archeon from Urmia Lake. Adv Pharm Bull4:61–67[PubMed]
    [Google Scholar]
  36. Nguyen T. M., Lee H., Kim J.. 2013; Selective isolation of Actinobacteria showing antibacterial activity against Panibacillus larvae from soil samples collected in South Korea. J Apiculture28:265–272
    [Google Scholar]
  37. Reddy G. S., Garcia-Pichel F.. 2005; Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol55:1295–1299 [CrossRef][PubMed]
    [Google Scholar]
  38. Reichenbach H.. 1992; The order Cytophagales . In The Prokaryotes, 4 2nd edn.. pp3631–3675Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: [CrossRef] Springer;
    [Google Scholar]
  39. Ryu S. H., Nguyen T. T., Park W., Kim C. J., Jeon C. O.. 2006; Runella limosa sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol56:2757–2760 [CrossRef][PubMed]
    [Google Scholar]
  40. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  41. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  42. Shen L., Liu Y., Yao T., Wang N., Xu B., Jiao N., Liu H., Zhou Y., Liu X., Wang Y.. 2013; Dyadobacter tibetensis sp. nov., isolated from glacial ice core. Int J Syst Evol Microbiol63:3636–3639 [CrossRef][PubMed]
    [Google Scholar]
  43. Sheu S. Y., Chen Y. S., Shiau Y. W., Chen W. M.. 2013; Fluviimonas pallidilutea gen. nov., sp. nov., a new member of the family Cytophagaceae isolated from a freshwater river. Int J Syst Evol Microbiol63:3861–3867 [CrossRef][PubMed]
    [Google Scholar]
  44. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  45. Stanier R. Y.. 1940; Studies on the Cytophagas. J Bacteriol40:619–635[PubMed]
    [Google Scholar]
  46. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  47. Tang Y., Dai J., Zhang L., Mo Z., Wang Y., Li Y., Ji S., Fang C., Zheng C.. 2009; Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol59:60–64 [CrossRef][PubMed]
    [Google Scholar]
  48. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  49. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: [CrossRef] American Society for Microbiology;
    [Google Scholar]
  50. Van Pham H. T., Kim J.. 2014; Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr Microbiol68:88–95 [CrossRef][PubMed]
    [Google Scholar]
  51. Vaughn R. H., Mitchell N. B., Levine M.. 1939; The Voges-Proskauer and methyl red reactions in the coli-aerogenes group. J Am Water Works Assoc31:993–1001
    [Google Scholar]
  52. Yoon J. H., Kang S. J., Lee C. H., Oh T. K.. 2005; Marinicola seohaensis gen. nov., sp. nov., isolated from sea water of the Yellow Sea, Korea. Int J Syst Evol Microbiol55:859–863 [CrossRef][PubMed]
    [Google Scholar]
  53. Yoon J., Ishikawa S., Kasai H., Yokota A.. 2007; Persicitalea jodogahamensis gen. nov., sp. nov., a marine bacterium of the family ‘Flexibacteraceae’, isolated from seawater in Japan. Int J Syst Evol Microbiol57:1014–1017 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000714
Loading
/content/journal/ijsem/10.1099/ijsem.0.000714
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error