1887

Abstract

An aerobic bacterium, designated DHF9, was isolated from a soil sample collected from the lower subtropical forest of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Cells were Gram-stain-negative, non-motile, short rods that multiplied by binary division. Strain DHF9 was an obligately acidophilic, mesophilic bacterium capable of growth at pH 3.5–5.5 (optimum pH 4.0) and at 10–33 °C (optimum 28–33 °C). Growth was inhibited at NaCl concentrations above 2.0 % (w/v). The major fatty acids were iso-C, C and Cω7. The polar lipids consist of phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids, two unidentified polar lipids and an unidentified glycolipid. The DNA G+C content was 57.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the genus in subdivision 1 of the phylum , with the highest 16S rRNA gene sequence similarity of 97.0 % to Jbg-1. Based on phylogenetic, chemotaxonomic and physiological analyses, it is proposed that strain DHF9 represents a novel species of the genus , named sp. nov. The type strain is DHF9 ( = DSM 29920 = CGMCC 1.12997).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000710
2016-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/276.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000710&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. ( 2007;). Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol 73: 3113–3116 [CrossRef] [PubMed].
    [Google Scholar]
  3. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I. C., Sinninghe Damsté J. S.. ( 2012;). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol 62: 654–664 [CrossRef] [PubMed].
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. ( 1981;). Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Hiraishi A., Kitamura H.. ( 1984;). Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish 50: 1929–1937 [CrossRef].
    [Google Scholar]
  6. Hiraishi A., Nagashima K. V., Matsuura K., Shimada K., Takaichi S., Wakao N., Katayama Y.. ( 1998;). Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol 48: 1389–1398 [CrossRef] [PubMed].
    [Google Scholar]
  7. Huang Z. F., Fan Z. G.. ( 1982;). The climate of Dinghushan. Tropical and Subtropical Forest Ecosystem 1: 11–23.
    [Google Scholar]
  8. Janssen P. H.. ( 2006;). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72: 1719–1728 [CrossRef] [PubMed].
    [Google Scholar]
  9. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N.. ( 2009;). A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3: 442–453 [CrossRef] [PubMed].
    [Google Scholar]
  10. Koch I. H., Gich F., Dunfield P. F., Overmann J.. ( 2008;). Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol 58: 1114–1122 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lane D. J.. ( 1991;). Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley;.
    [Google Scholar]
  12. Liu C., Zuo W., Zhao Z., Qiu L.. ( 2012;). [Bacterial diversity of different successional stage forest soils in Dinghushan]. Wei Sheng Wu Xue Bao 52: 1489–1496 (In Chinese) [PubMed].
    [Google Scholar]
  13. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. ( 2011;). Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol 61: 1823–1828 [CrossRef] [PubMed].
    [Google Scholar]
  14. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  17. Mo J., Brown S., Peng S., Kong G.. ( 2003;). Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For Eco Manage 175: 573–583 [CrossRef].
    [Google Scholar]
  18. Okamura K., Kawai A., Yamada T., Hiraishi A.. ( 2011;). Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. FEMS Microbiol Lett 317: 138–142 [CrossRef] [PubMed].
    [Google Scholar]
  19. Pankratov T. A., Dedysh S. N.. ( 2010;). Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol 60: 2951–2959 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16.
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000710
Loading
/content/journal/ijsem/10.1099/ijsem.0.000710
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error