1887

Abstract

An aerobic bacterium, designated DHF9, was isolated from a soil sample collected from the lower subtropical forest of Dinghushan Biosphere Reserve, Guangdong Province, PR China. Cells were Gram-stain-negative, non-motile, short rods that multiplied by binary division. Strain DHF9 was an obligately acidophilic, mesophilic bacterium capable of growth at pH 3.5–5.5 (optimum pH 4.0) and at 10–33 °C (optimum 28–33 °C). Growth was inhibited at NaCl concentrations above 2.0 % (w/v). The major fatty acids were iso-C, C and Cω7. The polar lipids consist of phosphatidylethanolamine, two unidentified aminolipids, two unidentified phospholipids, two unidentified polar lipids and an unidentified glycolipid. The DNA G+C content was 57.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain belongs to the genus in subdivision 1 of the phylum , with the highest 16S rRNA gene sequence similarity of 97.0 % to Jbg-1. Based on phylogenetic, chemotaxonomic and physiological analyses, it is proposed that strain DHF9 represents a novel species of the genus , named sp. nov. The type strain is DHF9 ( = DSM 29920 = CGMCC 1.12997).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000710
2016-01-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/276.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000710&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Barns S. M., Cain E. C., Sommerville L., Kuske C. R.. 2007; Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl Environ Microbiol73:3113–3116 [CrossRef][PubMed]
    [Google Scholar]
  3. Dedysh S. N., Kulichevskaya I. S., Serkebaeva Y. M., Mityaeva M. A., Sorokin V. V., Suzina N. E., Rijpstra W. I. C., Sinninghe Damsté J. S.. 2012; Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al. 2008. Int J Syst Evol Microbiol62:654–664 [CrossRef][PubMed]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. 1981; Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Hiraishi A., Kitamura H.. 1984; Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. Bull Jpn Soc Sci Fish50:1929–1937 [CrossRef]
    [Google Scholar]
  6. Hiraishi A., Nagashima K. V., Matsuura K., Shimada K., Takaichi S., Wakao N., Katayama Y.. 1998; Phylogeny and photosynthetic features of Thiobacillus acidophilus and related acidophilic bacteria: its transfer to the genus Acidiphilium as Acidiphilium acidophilum comb. nov. Int J Syst Bacteriol48:1389–1398 [CrossRef][PubMed]
    [Google Scholar]
  7. Huang Z. F., Fan Z. G.. 1982; The climate of Dinghushan. Tropical and Subtropical Forest Ecosystem1:11–23
    [Google Scholar]
  8. Janssen P. H.. 2006; Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol72:1719–1728 [CrossRef][PubMed]
    [Google Scholar]
  9. Jones R. T., Robeson M. S., Lauber C. L., Hamady M., Knight R., Fierer N.. 2009; A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J3:442–453 [CrossRef][PubMed]
    [Google Scholar]
  10. Koch I. H., Gich F., Dunfield P. F., Overmann J.. 2008; Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int J Syst Evol Microbiol58:1114–1122 [CrossRef][PubMed]
    [Google Scholar]
  11. Lane D. J.. 1991; Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley;
    [Google Scholar]
  12. Liu C., Zuo W., Zhao Z., Qiu L.. 2012; [Bacterial diversity of different successional stage forest soils in Dinghushan]. Wei Sheng Wu Xue Bao52:1489–1496 (In Chinese)[PubMed]
    [Google Scholar]
  13. Männistö M. K., Rawat S., Starovoytov V., Häggblom M. M.. 2011; Terriglobus saanensis sp. nov., an acidobacterium isolated from tundra soil. Int J Syst Evol Microbiol61:1823–1828 [CrossRef][PubMed]
    [Google Scholar]
  14. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. 2013; When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  17. Mo J., Brown S., Peng S., Kong G.. 2003; Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. For Eco Manage175:573–583 [CrossRef]
    [Google Scholar]
  18. Okamura K., Kawai A., Yamada T., Hiraishi A.. 2011; Acidipila rosea gen. nov., sp. nov., an acidophilic chemoorganotrophic bacterium belonging to the phylum Acidobacteria. FEMS Microbiol Lett317:138–142 [CrossRef][PubMed]
    [Google Scholar]
  19. Pankratov T. A., Dedysh S. N.. 2010; Granulicella paludicola gen. nov., sp. nov., Granulicella pectinivorans sp. nov., Granulicella aggregans sp. nov. and Granulicella rosea sp. nov., acidophilic, polymer-degrading acidobacteria from Sphagnum peat bogs. Int J Syst Evol Microbiol60:2951–2959 [CrossRef][PubMed]
    [Google Scholar]
  20. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl20:16
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000710
Loading
/content/journal/ijsem/10.1099/ijsem.0.000710
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error