1887

Abstract

In a previous study on bifidobacterial distribution in New World monkeys, six strains belonging to the were isolated from faecal samples of baby common marmosets ( L.). All the isolates were Gram-positive-staining, anaerobic, asporogenous and fructose-6-phosphate phosphoketolase-positive. Comparative analysis of 16S rRNA gene sequences revealed relatively low levels of similarity (maximum identity 96 %) to members of the genus , and placed the isolates in three independent clusters: strains of cluster I (MRM_5.9 and MRM_5.10) and cluster III (MRM_5.18 and MRM_9.02) respectively showed 96.4 and 96.7 % 16S rRNA gene sequence similarity to DSM 23973, while strains of cluster II (MRM_8.14 and MRM_9.14) showed 95.4 % similarity to DSM 23968. Phylogenetic analysis of partial and gene sequences supported an independent phylogenetic position of each cluster from each other and from the related type strains DSM 23973 and DSM 23968. Clusters I, II and III respectively showed DNA G+C contents of 64.9–65.1, 56.4–56.7 and 63.1–63.7 mol%. The major cellular fatty acids of MRM_5.9 were C, C and Cω9 dimethylacetal, while C was prominent in strains MRM_5.18 and MRM_8.14, followed by Cω9 and C. Biochemical profiles and growth parameters were recorded for all the isolates. Based on the data provided, the clusters represent three novel species, for which the names sp. nov. (type strain MRM_5.9 = DSM 100196 = JCM 30796), sp. nov. (type strain MRM_8.14 = DSM 100202 = JCM 30799) and sp. nov. (type strain MRM_5.18 = DSM 100201 = JCM 30798) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000708
2016-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/255.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000708&mimeType=html&fmt=ahah

References

  1. Baffoni L. , Stenico V. , Strahsburger E. , Gaggìa F. , Di Gioia D. , Modesto M. , Mattarelli P. , Biavati B. . ( 2013;). Identification of species belonging to the Bifidobacterium genus by PCR-RFLP analysis of a hsp60 gene fragment. BMC Microbiol 13: 149 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bailey M. T. , Coe C. L. . ( 2002;). Intestinal microbial patterns of the common marmoset and rhesus macaque. Comp Biochem Physiol A Mol Integr Physiol 133: 379–388 [CrossRef] [PubMed].
    [Google Scholar]
  3. Biavati B. , Mattarelli P. . ( 2012;). Genus Bifidobacterium . . In Bergey's Manual of Systematic Bacteriology, 5, , 2nd edn.., pp. 171–206. Edited by Goodfellow M. , Kämpfer P. , Busse H. -J. , Suzuki K. , Ludwig W. , Whitman W. B. . New York: Springer;.
    [Google Scholar]
  4. Campanella J. J. , Bitincka L. , Smalley J. . ( 2003;). MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4: 29–32 [CrossRef] [PubMed].
    [Google Scholar]
  5. Castresana J. . ( 2007;). Topological variation in single-gene phylogenetic trees. Genome Biol 8: 216 [PubMed].[CrossRef]
    [Google Scholar]
  6. Caton J. M. , Hill D. M. , Hume I. D. , Crook G. A. . ( 1996;). The digestive strategy of the common marmoset. Callithrix jacchus. Comp Biochem Physiol A Physiol 114: 1–8 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cavalli-Sforza L. L. , Edwards A. W. F. . ( 1967;). Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19: 233–257 [PubMed].
    [Google Scholar]
  8. Chao S. H. , Tomii Y. , Sasamoto M. , Fujimoto J. , Tsai Y. C. , Watanabe K. . ( 2008;). Lactobacillus capillatus sp. nov., a motile bacterium isolated from stinky tofu brine. Int J Syst Evol Microbiol 58: 2555–2559 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  11. Kikuchi H. , Yajima T. . ( 1992;). Correlation between water-holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats. J Sci Food Agric 60: 139–146 [CrossRef].
    [Google Scholar]
  12. Killer J. , Kopecný J. , Mrázek J. , Rada V. , Benada O. , Koppová I. , Havlík J. , Straka J. . ( 2009;). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. Int J Syst Evol Microbiol 59: 2020–2024 [CrossRef] [PubMed].
    [Google Scholar]
  13. Killer J. , Kopečný J. , Mrázek J. , Havlík J. , Koppová I. , Benada O. , Rada V. , Kofronˇová O. . ( 2010;). Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 33: 359–366 [CrossRef] [PubMed].
    [Google Scholar]
  14. Killer J. , Mrázek J. , Bunešová V. , Havlík J. , Koppová I. , Benada O. , Rada V. , Kopečný J. , Vlková E. . ( 2013;). Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). Syst Appl Microbiol 36: 11–16 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kopečný J. , Mrázek J. , Killer J. . ( 2010;). The presence of bifidobacteria in social insects, fish and reptiles. Folia Microbiol (Praha) 55: 336–339 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kuykendall L. D. , Roy M. A. , O'Neill J. J. , Devine T. E. . ( 1988;). Fatty acids, antibiotics resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  18. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  19. Mattarelli P. , Biavati B. . ( 2014;). The genera Bifidobacterium, Parascardovia and Scardovia . . In Lactic Acid Bacteria: Biodiversity and Taxonomy, pp. 509–536. Edited by Holzapfel W. , Wood B. . Chichester: Wiley; [CrossRef].
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Michelini S. , Modesto M. , Oki K. , Stenico V. , Stefanini I. , Biavati B. , Watanabe K. , Ferrara A. , Mattarelli P. . ( 2015;). Isolation and identification of cultivable Bifidobacterium spp. from the faeces of 5 baby common marmosets (Callithrix jacchus L.). Anaerobe 33: 101–104 [CrossRef] [PubMed].
    [Google Scholar]
  22. Miller L. T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  23. Modesto M. , Michelini S. , Stefanini I. , Ferrara A. , Tacconi S. , Biavati B. , Mattarelli P. . ( 2014;). Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 64: 2819–2827 [CrossRef] [PubMed].
    [Google Scholar]
  24. Modesto M. , Michelini S. , Stefanini I. , Sandri C. , Spiezio C. , Pisi A. , Filippini G. , Biavati B. , Mattarelli P. . ( 2015;). Bifidobacterium lemurum sp. nov., from faeces of the ring-tailed lemur (Lemur catta). Int J Syst Evol Microbiol 65: 1726–1734 [CrossRef] [PubMed].
    [Google Scholar]
  25. Orban J. I. , Patterson J. A. . ( 2000;). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 40: 221–224 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pineiro M. , Stanton C. . ( 2007;). Probiotic bacteria: legislative framework – requirements to evidence basis. J Nutr 137: (Suppl. 2), 850S–853S [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Scardovi V. . ( 1986;). Genus Bifidobacterium . . In Bergey's Manual of Systematic Bacteriology, pp. 1418–1434. Edited by Sneath P. H. A. , Mair N. S. , Sharpe M. E. , Holt J. G. . Baltimore: Williams & Wilkins;.
    [Google Scholar]
  29. Schleifer K. H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  30. Talavera G. , Castresana J. . ( 2007;). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ventura M. , Canchaya C. , Zink R. , Fitzgerald G. F. , van Sinderen D. . ( 2004;). Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses. Appl Environ Microbiol 70: 6197–6209 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. , other authors . ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  35. Yanokura E. , Oki K. , Makino H. , Modesto M. , Pot B. , Mattarelli P. , Biavati B. , Watanabe K. . ( 2015;). Subspeciation of Bifidobacterium longum by multilocus approaches and amplified fragment length polymorphism: description of B. longum subsp., suillum subsp. nov., isolated from the faeces of piglets. Syst Appl Microbiol 38: 305–314 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000708
Loading
/content/journal/ijsem/10.1099/ijsem.0.000708
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error