gen. nov., sp. nov., a myxol-producing bacterium from surface seawater Free

Abstract

A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, strain 2A-8, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. The strain produced myxol as a major carotenoid. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family and was related most closely to the genus (91.0–94.4 % 16S rRNA gene sequence similarity to the type strains of species of this genus). The DNA G+C content was 35 mol%. The major fatty acids were iso-C and iso-C 3-OH. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and five unidentified lipids. Menaquinone 6 was detected as the sole isoprenoid quinone. On the basis of phenotypic, genotypic and chemotaxonomic data, strain 2A-8 represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is 2A-8 ( = NBRC 111187 = KCTC 42676).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000706
2016-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/248.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000706&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Asker D., Beppu T., Ueda K. 2007; Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57:837–843 [View Article][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A. 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  4. Bernardet J. F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070[PubMed]
    [Google Scholar]
  5. Chen W. M., Sheu F. S., Sheu S. Y. 2012; Aquimarina salinaria sp. nov., a novel algicidal bacterium isolated from a saltpan. Arch Microbiol 194:103–112 [View Article][PubMed]
    [Google Scholar]
  6. DeLong E. F., Preston C. M., Mincer T., Rich V., Hallam S. J., Frigaard N. U., Martinez A., Sullivan M. B., Edwards R., other authors. 2006; Community genomics among stratified microbial assemblages in the ocean's interior. Science 311:496–503 [View Article][PubMed]
    [Google Scholar]
  7. Dittmer J. C., Lester R. L. 1964; A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127[PubMed]
    [Google Scholar]
  8. Dyksterhouse S. E., Gray J. P., Herwig R. P., Lara J. C., Staley J. T. 1995; Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123 [View Article][PubMed]
    [Google Scholar]
  9. Fautz E., Reichenbach H. 1980; A simple test for flexirubin type pigments. FEMS Microbiol Lett 8:87–91 [View Article]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  12. Hansman R. L., Griffin S., Watson J. T., Druffel E. R., Ingalls A. E., Pearson A., Aluwihare L. I. 2009; The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc Natl Acad Sci U S A 106:6513–6518 [View Article][PubMed]
    [Google Scholar]
  13. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [View Article]
    [Google Scholar]
  14. Khan S. T., Nakagawa Y., Harayama S. 2006; Krokinobacter gen. nov., with three novel species, in the family Flavobacteriaceae. Int J Syst Evol Microbiol 56:323–328 [View Article][PubMed]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  16. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184[PubMed]
    [Google Scholar]
  17. Lewin R. A. 1969; A classification of flexibacteria. J Gen Microbiol 58:189–206 [View Article][PubMed]
    [Google Scholar]
  18. Li G., Lai Q., Sun F., Liu X., Xie Y., Du Y., Li G., Shao Z. 2014; Aquimarina atlantica sp. nov., isolated from surface seawater of the Atlantic Ocean. Antonie van Leeuwenhoek 106:293–300 [View Article][PubMed]
    [Google Scholar]
  19. Lin B., Lu G., Zheng Y., Xie W., Li S., Hu Z. 2012; Aquimarina agarilytica sp. nov., an agarolytic species isolated from a red alga. Int J Syst Evol Microbiol 62:869–873 [View Article][PubMed]
    [Google Scholar]
  20. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [View Article]
    [Google Scholar]
  21. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  22. Miyazaki M., Nagano Y., Fujiwara Y., Hatada Y., Nogi Y. 2010; Aquimarina macrocephali sp. nov., isolated from sediment adjacent to sperm whale carcasses. Int J Syst Evol Microbiol 60:2298–2302 [View Article][PubMed]
    [Google Scholar]
  23. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Frolova G. M., Mikhailov V. V., Lee K. H., Bae K. S. 2005; Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierella latercula gen. nov., comb. nov. Int J Syst Evol Microbiol 55:225–229 [View Article][PubMed]
    [Google Scholar]
  24. Nedashkovskaya O. I., Vancanneyt M., Christiaens L., Kalinovskaya N. I., Mikhailov V. V., Swings J. 2006; Aquimarina intermedia sp. nov., reclassification of Stanierella latercula (Lewin 1969) as Aquimarina latercula comb. nov. and Gaetbulimicrobium brevivitae Yoon et al. 2006 as Aquimarina brevivitae comb. nov. and emended description of the genus Aquimarina. Int J Syst Evol Microbiol 56:2037–2041 [View Article][PubMed]
    [Google Scholar]
  25. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122 [View Article]
    [Google Scholar]
  26. Park S. C., Choe H. N., Baik K. S., Seong C. N. 2012; Aquimarina mytili sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina macrocephali. Int J Syst Evol Microbiol 62:1974–1979 [View Article][PubMed]
    [Google Scholar]
  27. Park S. C., Choe H. N., Baik K. S., Seong C. N. 2013; Aquimarina gracilis sp. nov., isolated from the gut microflora of a mussel, Mytilus coruscus, and emended description of Aquimarina spongiae. Int J Syst Evol Microbiol 63:1782–1787 [View Article][PubMed]
    [Google Scholar]
  28. Saito H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [View Article][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  30. Shaw N. 1968; The detection of lipids on thin-layer chromatograms with the periodate-Schiff reagents. Biochim Biophys Acta 164:435–436 [View Article][PubMed]
    [Google Scholar]
  31. Shindo K., Kikuta K., Suzuki A., Katsuta A., Kasai H., Yasumoto-Hirose M., Matsuo Y., Misawa N., Takaichi S. 2007; Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol 74:1350–1357 [View Article][PubMed]
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  33. Teramoto M., Nishijima M. 2015; Flavicella marina gen. nov., sp. nov., a carotenoid-producing bacterium from surface seawater. Int J Syst Evol Microbiol 65:799–804 [View Article][PubMed]
    [Google Scholar]
  34. Teramoto M., Takaichi S., Inomata Y., Ikenaga H., Misawa N. 2003; Structural and functional analysis of a lycopene β-monocyclase gene isolated from a unique marine bacterium that produces myxol. FEBS Lett 545:120–126 [View Article][PubMed]
    [Google Scholar]
  35. Teramoto M., Suzuki M., Okazaki F., Hatmanti A., Harayama S. 2009; Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370 [View Article][PubMed]
    [Google Scholar]
  36. Teramoto M., Yagyu K., Nishijima M. 2015; Perspicuibacter marinus gen. nov., sp. nov., a semi-transparent bacterium isolated from surface seawater, and description of Arenicellaceae fam. nov. and Arenicellales ord. nov. Int J Syst Evol Microbiol 65:353–358 [View Article][PubMed]
    [Google Scholar]
  37. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  38. van den Berg H., Faulks R., Granado H. F., Hirschberg J., Olmedilla B., Sandmann G., Southon S., Stahl W. 2000; The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912 [View Article]
    [Google Scholar]
  39. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  40. Yi H., Chun J. 2011; Aquimarina addita sp. nov., isolated from seawater. Int J Syst Evol Microbiol 61:2445–2449 [View Article][PubMed]
    [Google Scholar]
  41. Yokoyama A., Miki W. 1995; Isolation of myxol from a marine bacterium Flavobacterium sp. associated with a marine sponge. Fish Sci 61:684–686 [CrossRef]
    [Google Scholar]
  42. Yoon J. H., Kang S. J., Lee C. H., Oh T. K. 2005; Dokdonia donghaensis gen. nov., sp. nov., isolated from sea water. Int J Syst Evol Microbiol 55:2323–2328 [View Article][PubMed]
    [Google Scholar]
  43. Yoon J. H., Kang S. J., Jung S. Y., Oh H. W., Oh T. K. 2006; Gaetbulimicrobium brevivitae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 56:115–119 [View Article][PubMed]
    [Google Scholar]
  44. Yoon B. J., You H. S., Lee D. H., Oh D. C. 2011; Aquimarina spongiae sp. nov., isolated from marine sponge Halichondria oshoro. Int J Syst Evol Microbiol 61:417–421 [View Article][PubMed]
    [Google Scholar]
  45. Yoon J. H., Kang S. J., Park S., Oh T. K. 2012; Reclassification of the three species of the genus Krokinobacter into the genus Dokdonia as Dokdonia genika comb. nov., Dokdonia diaphoros comb. nov. and Dokdonia eikasta comb. nov., and emended description of the genus Dokdonia Yoon et al. 2005. Int J Syst Evol Microbiol 62:1896–1901 [View Article][PubMed]
    [Google Scholar]
  46. Yu T., Yin Q., Song X., Zhao R., Shi X., Zhang X. H. 2013; Aquimarina longa sp. nov., isolated from seawater, and emended description of Aquimarina muelleri . Int J Syst Evol Microbiol 63:1235–1240 [View Article][PubMed]
    [Google Scholar]
  47. Yu T., Zhang Z., Fan X., Shi X., Zhang X. H. 2014; Aquimarina megaterium sp. nov., isolated from seawater. Int J Syst Evol Microbiol 64:122–127 [View Article][PubMed]
    [Google Scholar]
  48. Zhang Z., Yu T., Xu T., Zhang X. H. 2014; Aquimarina pacifica sp. nov., isolated from seawater. Int J Syst Evol Microbiol 64:1991–1997 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000706
Loading
/content/journal/ijsem/10.1099/ijsem.0.000706
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed