1887

Abstract

Two Gram-stain-negative, catalase- and oxidase-positive, strictly aerobic, non-motile, moderately halophilic bacteria (strains X15M-6 and X15M-8) were isolated from Lake Xiaochaidan, a salt lake in Qaidam basin, Qinghai Province, China. Cells of X15M-6 were rod-like or coccoid, 0.5–0.9 μm wide and 0.9–1.5 μm long; cells of X15M-8 were rods, 0.3–0.6 μm wide and 1.2–2.2 μm long. Growth was observed in the presence of 0.5–14.0 % (w/v) NaCl (optimum, 3.0 %) and at pH 6.5–10.0 (optimum, pH 7.0–7.5) for both. X15M-6 and X15M-8 grew at 10–35 °C (optimum, 20–25 °C) and 4–35 °C (optimum, 25 °C), respectively. Both contained iso-C, anteiso-C and iso-C 3-OH as the major fatty acids, phosphatidylethanolamine and an unknown lipid as the major polar lipids, and menaquinone MK-6 as the major respiratory quinone. The DNA G+C contents were 32.8 and 35.0 mol% for X15M-6 and X15M-8, respectively. Phylogenetic trees based on 16S rRNA gene sequences showed that both strains belonged to the genus and formed a separate lineage. In addition, strains X15M-6 and X15M-8 shared 96.8 % 16S rRNA gene sequence similarity and showed highest similarities to members of the genus (92.7–93.5 and 91.8–93.1 %, respectively). Based on the above data, it is concluded that strains X15M-6 and X15M-8 represent two novel species of the genus , for which the names sp. nov. (type strain X15M-6 = CGMCC 1.12925 = JCM 30615) and sp. nov. (type strain X15M-8 = CGMCC 1.12931 = JCM 30616) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000687
2016-01-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/125.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000687&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I.. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia, Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol57:1095–1107 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A.. 1998; Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al. 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology144:1601–1609 [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Y. G., Cui X. L., Wang Y. X., Tang S. K., Zhang Y. Q., Li W. J., Liu J. H., Peng Q., Xu L. H.. 2009; Psychroflexus sediminis sp. nov., a mesophilic bacterium isolated from salt lake sediment in China. Int J Syst Evol Microbiol59:569–573 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Kang J. Y., Jahng K. Y.. 2014; Psychroflexus salarius sp. nov., isolated from Gomso salt pan. Int J Syst Evol Microbiol64:3467–3472 [CrossRef][PubMed]
    [Google Scholar]
  6. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D.. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol43:77–83 [CrossRef][PubMed]
    [Google Scholar]
  7. Donachie S. P., Bowman J. P., Alam M.. 2004; Psychroflexus tropicus sp. nov., an obligately halophilic Cytophaga-Flavobacterium-Bacteroides group bacterium from an Hawaiian hypersaline lake. Int J Syst Evol Microbiol54:935–940 [CrossRef][PubMed]
    [Google Scholar]
  8. Dong X. Z., Cai M. Y.. 2001; Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  9. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  10. Fitch W. M.. 1971; Toward defining course of evolution-minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  11. Kates M.. 1986; Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: [CrossRef] Cambridge University Press;
    [Google Scholar]
  14. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  17. McBride M.. 2014; The family Flavobacteriaceae. In The Prokaryotes pp643–676Edited by Rosenberg E., DeLong E., Lory S., Stackebrandt E., Thompson F.. Berlin: Springer;
    [Google Scholar]
  18. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  19. Reichenbach H.. 1992; The order Cytophagales. In The Prokaryotes pp3631–3675Edited by Balows A., Trüper H., Dworkin M., Harder W., Schleifer K. -H.. New York: [CrossRef] Springer;
    [Google Scholar]
  20. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  21. Seiler H., Bleicher A., Busse H. J., Hüfner J., Scherer S.. 2012; Psychroflexus halocasei sp. nov., isolated from a microbial consortium on a cheese. Int J Syst Evol Microbiol62:1850–1856 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  24. Yoon J. H., Kang S. J., Jung Y. T., Oh T. K.. 2009; Psychroflexus salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol59:2404–2407 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang H., Hosoi-Tanabe S., Nagata S., Ban S., Imura S.. 2010; Psychroflexus lacisalsi sp. nov., a moderate halophilic bacterium isolated from a hypersaline lake (Hunazoko-Ike) in Antarctica. J Microbiol48:160–164 [CrossRef][PubMed]
    [Google Scholar]
  26. Zhong Z. P., Liu Y., Liu H. C., Wang F., Zhou Y. G., Liu Z. P.. 2014; Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol64:2812–2818 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000687
Loading
/content/journal/ijsem/10.1099/ijsem.0.000687
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error