1887

Abstract

A novel Gram-stain-negative, rods or bent rods, facultatively anaerobic, oxidase-negative and catalase-positive bacterium, designated XK5, was isolated from coastal sediment from Xiaoshi Island, Weihai, China. Optimal growth occurred at 28–35 °C (range 8–42 °C) and pH 7.0–8.0 (range pH 6.0–9.0) with 1–3 % (w/v) NaCl (range 0.5–8 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain XK5 was 92.1 % similar to the type strain of , 91.9 % to the type strain of and 91.8 % to the type strain of ; similarity to other species was less than 91 %. The isolate and closely related environmental clones formed a novel family level clade in the order . The polar lipid profile of the novel isolate consisted of phosphatidylethanolamine, phosphatidylglycerol and some other unknown phospholipids, aminolipids and lipids. Major cellular fatty acids were iso-Cω9 and iso-C and the main respiratory lipoquinone was Q-8. The DNA G+C content of strain XK5 was 59.3 mol%. Comparative analysis of 16S rRNA gene sequences and characterization indicated that strain XK5 represents a novel species of a new genus within a novel family of the order , for which the name gen. nov., sp. nov. is proposed. The type strain of is XK5 ( = ATCC BAA-2615 = CICC 10905). In addition, a novel family name, fam. nov., is proposed to accommodate the genus .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000683
2016-01-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/107.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000683&mimeType=html&fmt=ahah

References

  1. Banciu H., Sorokin D. Y., Galinski E. A., Muyzer G., Kleerebezem R., Kuenen J. G.. ( 2004;). Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8: 325–334 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bryantseva I., Gorlenko V. M., Kompantseva E. I., Imhoff J. F., Süling J., Mityushina L.. ( 1999;). Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49: 697–703 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bryantseva I. A., Tourova T. P., Kovaleva O. L., Kostrikina N. A., Gorlenko V. M.. ( 2010;). Ectothiorhodospira magna sp. nov., a new large alkaliphilic purple sulfur bacterium. Microbiology 79: 780–790 [CrossRef].
    [Google Scholar]
  4. CLSI ( 2012;). Performance Standards for Antimicrobial Susceptibility Testing 22nd Informational supplement M100-S22 Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  6. Euzéby J. P.. ( 1997;). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47: 590–592 [CrossRef] [PubMed].
    [Google Scholar]
  7. Imhoff J. F.. ( 1984;). Reassignment of the genus Ectothiorhodospira Pelsh 1936 to a new family, Ectothiorhodospiraceae fam. nov., and emended description of the Chromatiaceae Bavendamn 1924. Int J Syst Bacteriol 34: 338–339 [CrossRef].
    [Google Scholar]
  8. Imhoff J. F.. ( 2005;). Order I. Chromatiales ord. nov. . In Bergey's Manual of Systematic Bacteriology, 2nd edn.., vol. 2B, pp. 1–59. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer; [CrossRef].
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  11. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  13. Murray R. G. E., Doetsch R. N., Robinow F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhadt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Pelsh A. O.. ( 1936;). Hydrobiology of Karabugaz Bay of the Caspian Sea. Tr. Vses. Nauchno-Issled. Inst. Galurgii Leningrad 5: 49–126.
    [Google Scholar]
  15. Pfennig N., Trüper H. G.. ( 1974;). The phototrophic bacteria. . In Bergey's Manual of Determinative Bacteriology, 8th edn.., pp. 24–60. Edited by Buchanan, Gibbons. Baltimore: Williams & Wilkins;.
    [Google Scholar]
  16. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  17. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J.. ( 2001;). Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov, and Thioalkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51: 565–580 [CrossRef] [PubMed].
    [Google Scholar]
  18. Sorokin D. Y., Tourova T. P., Lysenko A. M., Mityushina L. L., Kuenen J. G.. ( 2002a;). Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int J Syst Evol Microbiol 52: 657–664 [CrossRef] [PubMed].
    [Google Scholar]
  19. Sorokin D. Y., Gorlenko V. M., Tourova T. P., Tsapin A. I., Nealson K. H., Kuenen G. J.. ( 2002b;). Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 52: 913–920 [PubMed].
    [Google Scholar]
  20. Sorokin D. Y., Tourova T. P., Sjollema K. A., Kuenen J. G.. ( 2003;). Thialkalivibrio nitratireducens sp. nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. Int J Syst Evol Microbiol 53: 1779–1783 [CrossRef] [PubMed].
    [Google Scholar]
  21. Sorokin D. Y., Tourova T. P., Antipov A. N., Muyzer G., Kuenen J. G.. ( 2004;). Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate. Microbiology 150: 2435–2442 [CrossRef] [PubMed].
    [Google Scholar]
  22. Sorokin D. Y., van Pelt S., Tourova T. P., Takaichi S., Muyzer G.. ( 2007;). Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov. Microbiology 153: 1157–1164 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sorokin D. Y., Tourova T. P., Muyzer G., Kuenen G. J.. ( 2008;). Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58: 1685–1692 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sorokin D. Y., Muntyan M. S., Panteleeva A. N., Muyzer G.. ( 2012;). Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats. Int J Syst Evol Microbiol 62: 1884–1889 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  26. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  27. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, 3rd edn.., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: ASM press; [CrossRef].
    [Google Scholar]
  28. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000683
Loading
/content/journal/ijsem/10.1099/ijsem.0.000683
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error