1887

Abstract

Two bacterial isolates from water of the alkaline brackish Lake Solenoe (Buryatia, Russia), 2C and 5C, were characterized by using a polyphasic taxonomic approach. The strains were small, non-motile, Gram-stain-negative rods that formed small orange–red colonies on the surface of marine agar. Studies based on 16S rRNA gene sequences showed that the strains were related closely to CC-SAL-25 (98.7 % sequence similarity). The G+C content of the DNA was 38–40 mol%. DNA–DNA hybridization values between strains 2C and 5C and CC-SAL-25 were 56–58 mol%. A menaquinone with seven isoprene units (MK-7) was the major respiratory quinone. The fatty acid profiles were slightly different from that of CC-SAL-25. The novel strains could be distinguished from the phylogenetically closest species CC-SAL-25 based on matrix-assisted laser desorption ionization time-of-flight mass spectra of whole cells and a range of physiological and biochemical characteristics. The data obtained suggest that strains 2C and 5C represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 5C ( = VKM B-2724 = KCTC 32194).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000682
2016-01-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/137.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000682&mimeType=html&fmt=ahah

References

  1. Abell G. C., Bowman J. P.. 2005; Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol51:265–277 [CrossRef][PubMed]
    [Google Scholar]
  2. Akhwale J. K., Göker M., Rohde M., Schumann P., Klenk H.-P., Boga H. I.. 2015; Belliella kenyensis sp. nov., isolated from an alkaline lake. Int J Syst Evol Microbiol65:457–462 [CrossRef][PubMed]
    [Google Scholar]
  3. Anan'ina L. N., Plotnikova E. G., Gavrish E.Iu, Demakov V. A., Evtushenko L. I.. 2007; [Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association]. Mikrobiologiia76:369–376[PubMed]
    [Google Scholar]
  4. Arun A. B., Young C. C., Chen W. M., Hung M. H., Lai W. A., Chou J. H., Rekha P. D., Shen F. T., Su S. P.. 2009; Belliella pelovolcani sp. nov., isolated from a mud-volcano in Taiwan. Int J Syst Evol Microbiol59:2534–2537 [CrossRef][PubMed]
    [Google Scholar]
  5. Brettar I., Christen R., Höfle M. G.. 2004; Belliella baltica gen. nov., sp. nov., a novel marine bacterium of the Cytophaga-Flavobacterium-Bacteroides group isolated from surface water of the central Baltic Sea. Int J Syst Evol Microbiol54:65–70 [CrossRef][PubMed]
    [Google Scholar]
  6. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp267–287Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  7. Cottrell M. T., Kirchman D. L.. 2000; Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol66:1692–1697 [CrossRef][PubMed]
    [Google Scholar]
  8. Dawson R. M. C., Elliot D. C., Elliot W. H., Jones K. M.. 1986; Data for Biochemical Research, 3rd edn. Oxford: Clarendon Press;
    [Google Scholar]
  9. De Bartolomeo A., Trotta F., La Rosa F., Saltalamacchia G., Mastrandrea V.. 1991; Numerical analysis and DNA base compositions of some thermophilic Bacillus species. Int J Syst Bacteriol41:502–509 [CrossRef][PubMed]
    [Google Scholar]
  10. De Bruyne K., Slabbinck B., Waegeman W., Vauterin P., De Baets B., Vandamme P.. 2011; Bacterial species identification from MALDI-TOF mass spectra through data analysis and machine learning. Syst Appl Microbiol34:20–29 [CrossRef][PubMed]
    [Google Scholar]
  11. De Ley J., Catloir H., Reynarts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142[PubMed][CrossRef]
    [Google Scholar]
  12. Dorador C., Meneses D., Urtuvia V., Demergasso C., Vila I., Witzel K.-P., Imhoff J. F.. 2009; Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile. J Geophys Res Biogeosci114:G00D05 [CrossRef]
    [Google Scholar]
  13. Egorova D. V., Anan'ina L. N., Kozyreva L. P., Zakharyuk A. G., Plotnikova E. G.. 2011; Physical-chemical properties and microbial diversity of Lake Solenoe (Republik of Buryatia). Bulletin of Perm University . Biology1:55–59 (in Russian)
    [Google Scholar]
  14. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. 1981; Manual of Methods for General Bacteriology Washington, DC: American Society of Microbiology;
    [Google Scholar]
  16. Glaring M. A., Vester J. K., Lylloff J. E., Al-Soud W. A., Sørensen S. J., Stougaard P.. 2015; Microbial diversity in a permanently cold and alkaline environment in Greenland. PLoS One10:e0124863 [CrossRef][PubMed]
    [Google Scholar]
  17. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp21–132Edited by Munro H. N.. New York: [CrossRef] Academic Press;
    [Google Scholar]
  18. Kirchman D. L.. 2002; The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol39:91–100[PubMed]
    [Google Scholar]
  19. Mesbah N. M., Whitman W. B., Mesbah M.. 2011; Determination of the G+C content of prokaryotes. Methods Microbiol38:299–324[CrossRef]
    [Google Scholar]
  20. Owen R. J., Pitcher D.. 1985; Current methods for estimating DNA base composition and levels of DNA–DNA hybridization. In Chemical Methods in Bacterial Systematics pp67–93Edited by Goodfellow M., Minnikin E.. London: Academic Press;
    [Google Scholar]
  21. Reinchenbach H., Kohl W., Achenbach H.. 1981; The flexirubin pigments, chemosystematically useful compounds. In The Flavobacterium–Cytophaga Group pp101–108Edited by Reinchenbach H., Weeks O. B.. Weinheim, Germany: Verlag Chemie;
    [Google Scholar]
  22. Rosselló-Móra R., Urdiain M., López-López A.. 2011; DNA-DNA hybridization. Methods Microbiol38:325–347[CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  24. Sauer S., Kliem M.. 2010; Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol8:74–82 [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  29. Welker M., Moore E. R. B.. 2011; Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol34:2–11 [CrossRef][PubMed]
    [Google Scholar]
  30. Wilson K.. 1997; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp241–245Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  31. Xiong J., Liu Y., Lin X., Zhang H., Zeng J., Hou J., Yang Y., Yao T., Knight R., Chu H.. 2012; Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol14:2457–2466 [CrossRef][PubMed]
    [Google Scholar]
  32. Zaitseva S. V., Abidueva E., Yu ., Namsaraev V. V., Wang L., Wu L.. 2014; [Microbial community of the bottom sediments of the brackish Lake Beloe (Transbaikal region)]. Mikrobiologiia83:722–729[PubMed]
    [Google Scholar]
  33. Zhong Z.-P., Liu Y., Hou T.-T., Zhou Y.-G., Liu H.-C., Liu Z. P.. 2015; Belliella aquatica sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol65:1622–1627 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000682
Loading
/content/journal/ijsem/10.1099/ijsem.0.000682
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error