1887

Abstract

A yellow-pigmented, rod-shaped, non-flagellated, aerobic and Gram-reaction-negative bacterium, designated strain SM1212, was isolated from intertidal sand of Kongsfjorden, Svalbard. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SM1212 constituted a distinct lineage within the family . It shared highest 16S rRNA gene sequence similarities with the type strains of (96.0 %), (95.8 %) and (95.7 %) and < 95.6 % sequence similarity with other recognized species in the family . The strain grew at 4–35 °C and with 0–6.0 % (w/v) NaCl. It hydrolysed gelatin, DNA, starch and Tween 80 but did not reduce nitrate to nitrite. The major cellular fatty acids were anteiso-C, iso-C, iso-C G, anteiso-C A, iso-C 3-OH, C 2-OH and iso-C 3-OH and the major respiratory quinone was menaquinone MK-6. Polar lipids included phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminophospholipid, three unidentified aminolipids and nine unidentified lipids. The genomic DNA G+C content of strain SM1212 was 36.6 mol%. On the basis of data from this polyphasic study, strain SM1212 represents a novel species in a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SM1212 ( = MCCC 1K00234 = KCTC 32514).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000681
2016-01-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/144.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000681&mimeType=html&fmt=ahah

References

  1. Abell G. C. J., Bowman J. P.. ( 2005;). Ecological and biogeographic relationships of class Flavobacteria in the Southern Ocean. FEMS Microbiol Ecol 51: 265–277 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bano N., Hollibaugh J. T.. ( 2002;). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68: 505–518 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bernardet J.-F.. ( 2011;). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 4, pp. 106–111. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., N. L. Ward Ludwig W., Whitman W. B.. New York: Springer;.
    [Google Scholar]
  5. Bernardet J.-F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 455–480. [CrossRef] Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York: Springer;.
    [Google Scholar]
  6. Bernardet J.-F., Nakagawa Y., Holmes B.. & Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [PubMed].
    [Google Scholar]
  7. Bowman J. P.. ( 2006;). The marine clade of the family Flavobacteriaceae: the genera Aequorivita, Arenibacter, Cellulophaga, Croceibacter, Formosa, Gelidibacter, Gillisia, Maribacter, Mesonia, Muricauda, Polaribacter, Psychroexus, Psychroserpens, Robiginitalea, Salegentibacter, Tenacibaculum, Ulvibacter, Vitellibacter and Zobellia. In The Prokaryotes: a Handbook on the Biology of Bacteria. , 3rd edn, vol. 7, pp. 677–694 Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  8. Bowman J. P., Nichols D. S.. ( 2005;). Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia. Int J Syst Evol Microbiol 55: 1471–1486 [CrossRef] [PubMed].
    [Google Scholar]
  9. Brown M. V., Bowman J. P.. ( 2001;). A molecular phylogenetic survey of sea-ice microbial communities (SIMCO). FEMS Microbiol Ecol 35: 267–275 [CrossRef] [PubMed].
    [Google Scholar]
  10. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993 [PubMed].
    [Google Scholar]
  11. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48: 459–470 [CrossRef].
    [Google Scholar]
  12. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  13. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  14. Jooste P. J.. ( 1985;). The taxonomy and significance of Flavobacterium–Cytophaga strains from daily sources. PhD thesis, University of the Orange Free State..
  15. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  18. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  19. Lee D.-H., Cho S. J., Kim S. M., Lee S. B.. ( 2013;). Psychroserpens damuponensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 63: 703–708 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lee Y. M., Hwang C. Y., Lee I., Jung Y.-J., Cho Y., Baek K., Hong S. G., Kim J.-H., Chun J., Lee H. K.. ( 2014;). Lacinutrix jangbogonensis sp. nov., a psychrophilic bacterium isolated from Antarctic marine sediment and emended description of the genus Lacinutrix. Antonie van Leeuwenhoek 106: 527–533 [CrossRef] [PubMed].
    [Google Scholar]
  21. Li H., Zhang X.-Y., Liu C., Lin C.-Y., Xu Z., Chen X.-L., Zhou B.-C., Shi M., Zhang Y.-Z.. ( 2014;). Polaribacter huanghezhanensis sp. nov., isolated from Arctic fjord sediment, and emended description of the genus Polaribacter. Int J Syst Evol Microbiol 64: 973–978 [CrossRef] [PubMed].
    [Google Scholar]
  22. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  23. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J  Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  24. McBride M. J.. ( 2014;). The family Flavobacteriaceae. . In The Prokaryotes – Other Major Lineages of Bacteria and the Archaea, 4th edn, vol. 11, pp. 643–676. Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin: Springer;.
    [Google Scholar]
  25. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  26. Nedashkovskaya O. I., Vancanneyt M., Kim S. B.. ( 2010;). Bizionia echini sp. nov., isolated from a sea urchin. Int J Syst Evol Microbiol 60: 928–931 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  30. Yu Y., Li H. R., Zeng Y. X., Sun K., Chen B.. ( 2012;). Pricia antarctica gen. nov., sp. nov., a member of the family Flavobacteriaceae, isolated from Antarctic intertidal sediment. Int J Syst Evol Microbiol 62: 2218–2223 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000681
Loading
/content/journal/ijsem/10.1099/ijsem.0.000681
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error