1887

Abstract

An orange, Gram-reaction-negative and aerobic bacterium, designated MC 3718, was isolated from a tundra soil near Ny-Ålesund, Svalbard archipelago, Norway (78° N). The cells were motile with either a polar or a subpolar flagellum and reproduced by budding or asymmetrical cell division. Growth occurred at 4–37 °C (optimum 28–30 °C) and at pH 6.0–10.0 (optimum pH 9.0). Many cells accumulated poly-β-hydroxybutyrate granules and contained a single large polyphosphate granule at a pole or in the middle of the cell. Cell walls contained -diaminopimelic acid as the diagnostic diamino acid, and ubiquinone 10 was the main respiratory quinone. Strain MC 3718 contained summed feature 3 (comprising Cω7 and/or Cω6; 29.49 %), summed feature 8 (Cω7 and/or Cω6; 29.38 %), Cω6 (10.15 %), C 2-OH (9.05 %) and C (6.84 %) as the major cellular fatty acids. The main polar lipids were two sphingoglycolipids, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, three unknown phospholipids and two unknown polar lipids. Carotenoids were detected. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain MC 3718 belonged to the family . The DNA G+C content was 67.2 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain MC 3718 is considered to represent a novel genus and species in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is MC 3718 ( = CCTCC AB 2014274 = LMG 28636). Emended descriptions of the genera and and the species , and are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000677
2016-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/91.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000677&mimeType=html&fmt=ahah

References

  1. Balkwill D. L., Fredrickson J. K., Romine M. F. 2006; Sphingomonas and related genera. In The Prokaryotes, 3rd edn, vol. 7, pp 605–629Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer; [View Article]
    [Google Scholar]
  2. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  4. Busse H.-J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  5. Busse H.-J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  6. Chen C., Zheng Q., Wang Y. N., Yan X. J., Hao L. K., Du X., Jiao N. 2010; Stakelama pacifica gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from the Pacific Ocean. Int J Syst Evol Microbiol 60:2857–2861 [View Article][PubMed]
    [Google Scholar]
  7. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-b!ased tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  8. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  9. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  10. De Ley J., Swings J. 1976; Phenotypic description, numerical analysis and a proposal of an improved taxonomy and nomenclature of the genus Zymomonas Kluyver and van Niel 1936. Int J Syst Bacteriol 26:146–157 [View Article]
    [Google Scholar]
  11. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp 21–33Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Felföldi T., Vengring A., Márialigeti K., András J., Schumann P., Tóth E. M. 2014; Hephaestia caeni gen. nov., sp. nov., a novel member of the family Sphingomonadaceae isolated from activated sludge. Int J Syst Evol Microbiol 64:738–744 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  15. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  16. Francis I. M., Jochimsen K. N., De Vos P., van Bruggen A. H. C. 2014; Reclassification of rhizosphere bacteria including strains causing corky root of lettuce and proposal of Rhizorhapis suberifaciens gen. nov., comb. nov., Sphingobium mellinum sp. nov., Sphingobium xanthum sp. nov. and Rhizorhabdus argentea gen. nov., sp. nov. Int J Syst Evol Microbiol 64:1340–1350 [View Article][PubMed]
    [Google Scholar]
  17. Fukuda W., Chino Y., Araki S., Kondo Y., Imanaka H., Kanai T., Atomi H., Imanaka T. 2014; Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. Int J Syst Evol Microbiol 64:2034–2040 [View Article][PubMed]
    [Google Scholar]
  18. Geueke B., Busse H.-J., Fleischmann T., Kämpfer P., Kohler H. P. E. 2007; Description of Sphingosinicella xenopeptidilytica sp. nov., a β-peptide-degrading species, and emended descriptions of the genus Sphingosinicella and the species Sphingosinicella microcystinivorans . Int J Syst Evol Microbiol 57:107–113 [View Article][PubMed]
    [Google Scholar]
  19. Gich F., Overmann J. 2006; Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56:847–854 [View Article][PubMed]
    [Google Scholar]
  20. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Microbiol 29:319–322 [View Article]
    [Google Scholar]
  21. Jendrossek D., Selchow O., Hoppert M. 2007; Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum . Appl Environ Microbiol 73:586–593 [View Article][PubMed]
    [Google Scholar]
  22. Jogler M., Chen H., Simon J., Rohde M., Busse H.-J., Klenk H.-P., Tindall B. J., Overmann J. 2013; Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Int J Syst Evol Microbiol 63:1342–1349 [View Article][PubMed]
    [Google Scholar]
  23. Kämpfer P., Busse H.-J., Rosséllo-Mora R., Kjellin E., Falsen E. 2004; Rhodovarius lipocyclicus gen. nov. sp. nov., a new genus of the α-1 subclass of the Proteobacteria . Syst Appl Microbiol 27:511–516 [View Article][PubMed]
    [Google Scholar]
  24. Kämpfer P., Arun A. B., Young C. C., Busse H.-J., Kassmannhuber J., Rosselló-Móra R., Geueke B., Rekha P. D., Chen W. M. 2012; Sphingomicrobium lutaoense gen. nov., sp. nov., isolated from a coastal hot spring. Int J Syst Evol Microbiol 62:1326–1330 [View Article][PubMed]
    [Google Scholar]
  25. Kato M., Muto Y., Tanaka-Bandoh K., Watanabe K., Ueno K. 1995; Sphingolipid composition in Bacteroides species. Anaerobe 1:135–139 [View Article][PubMed]
    [Google Scholar]
  26. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  27. Kosako Y., Yabuuchi E., Naka T., Fujiwara N., Kobayashi K. 2000; Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al.1990, Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al. 1994, Porphyrobacter Fuerst et al. 1993, Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al. 1997, with the type genus Sphingomonas Yabuuchi et al. 1990. Microbiol Immunol 44:563–575 [View Article][PubMed]
    [Google Scholar]
  28. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [View Article][PubMed]
    [Google Scholar]
  29. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–147Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  30. Lee K. B., Liu C. T., Anzai Y., Kim H., Aono T., Oyaizu H. 2005; The hierarchical system of the ‘Alphaproteobacteria’: description of Hyphomonadaceae fam. nov., Xanthobacteraceae fam. nov. and Erythrobacteraceae fam. nov. Int J Syst Evol Microbiol 55:1907–1919 [View Article][PubMed]
    [Google Scholar]
  31. Lin Y. C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004; Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54:1669–1676 [View Article][PubMed]
    [Google Scholar]
  32. Maruyama T., Park H.-D., Ozawa K., Tanaka Y., Sumino T., Hamana K., Hiraishi A., Kato K. 2006; Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56:85–89 [View Article][PubMed]
    [Google Scholar]
  33. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  34. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp 2–11Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  35. Ostle A. G., Holt J. G. 1982; Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44:238–241[PubMed]
    [Google Scholar]
  36. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  39. Sly L. I., Cahill M. M. 1997; Transfer of Blastobacter natatorius (Sly 1985) to the genus Blastomonas gen. nov. as Blastomonas natatoria comb. nov. Int J Syst Bacteriol 47:566–568 [View Article][PubMed]
    [Google Scholar]
  40. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  41. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  42. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  44. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  45. Uchida H., Hamana K., Miyazaki M., Yoshida T., Nogi Y. 2012; Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. Int J Syst Evol Microbiol 62:2224–2228 [View Article][PubMed]
    [Google Scholar]
  46. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [View Article][PubMed]
    [Google Scholar]
  47. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. 1990; Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34:99–119 [View Article][PubMed]
    [Google Scholar]
  48. Yabuuchi E., Yamamoto H., Terakubo S., Okamura N., Naka T., Fujiwara N., Kobayashi K., Kosako Y., Hiraishi A. 2001; Proposal of Sphingomonas wittichii sp. nov. for strain RW1T, known as a dibenzo-p-dioxin metabolizer. Int J Syst Evol Microbiol 51:281–292 [View Article][PubMed]
    [Google Scholar]
  49. Yoon J. H., Kang S. J., Lee J. S., Nam S. W., Kim W., Oh T. K. 2008; Sphingosinicella soli sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 58:173–177 [View Article][PubMed]
    [Google Scholar]
  50. Yurkov V., Stackebrandt E., Buss O., Vermeglio A., Gorlenko V., Beatty J. T. 1997; Reorganization of the genus Erythromicrobium: description of “Erythromicrobium sibiricum” as Sandaracinobacter sibiricus gen. nov., sp. nov., and of “Erythromicrobium ursincola” as Erythromonas ursincola gen. nov., sp. nov. Int J Syst Bacteriol 47:1172–1178 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000677
Loading
/content/journal/ijsem/10.1099/ijsem.0.000677
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error