1887

Abstract

A novel streptomycete strain, designated XY25, was isolated from the rhizosphere soil in an alfalfa field in Jingyang, Shanxi, China. The isolate showed optimal growth at 37 °C, and was capable of growing at pH 6–10 and in the presence of 0–6 % (w/v) NaCl. Mycelia of strain XY25 appeared spiral and developed into white spore chains with long-rod spores and a smooth surface. The 16S rRNA gene sequence of XY25 was determined and was found to be highly similar to those of species of the genus including DSM 41861 (99.11 % 16S rRNA gene sequence similarity), DSM 40366 (98.49 %) and DSM 40372 (98.43 %), all of which were used for further characterization. Each of the four streptomycetes showed distinctive patterns of carbon usage and fatty acids composition. Analysis of cellular components of strain XY25 revealed -diaminopimelic acid as diagnostic diamino acid and xylose as the major sugar, whereas polar lipids were determined as phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, an unknown phospholipid, two unknown phosphatidylinositol mannosides and several unknown lipids. Menaquinones were dominated by MK-9(H) and MK-9(H), and the main fatty acids were anteiso-C, iso-C and anteiso-C. DNA–DNA hybridization studies indicated that strain XY25 showed relatedness values of 35.2–40.42 % with the closest related species. Based on these results, strain XY25 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XY25 ( = KCTC 39571 = CCTCC AA2015019).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000671
2016-01-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/44.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000671&mimeType=html&fmt=ahah

References

  1. Bouizgarne B., Lanoot B., Loqman S., Spröer C., Klenk H. P., Swings J., Ouhdouch Y.. 2009; Streptomyces marokkonensis sp. nov., isolated from rhizosphere soil of Argania spinosa L. Int J Syst Evol Microbiol59:2857–2863 [CrossRef][PubMed]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  6. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  7. Hamedi J., Mohammadipanah F., Klenk H. P., Pötter G., Schumann P., Spröer C., von Jan M., Kroppenstedt R. M.. 2010; Streptomyces iranensis sp. nov., isolated from soil. Int J Syst Evol Microbiol60:1504–1509 [CrossRef][PubMed]
    [Google Scholar]
  8. Huss V. A. R., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P.. 2012; Genus I. Streptomyces Waksman and Henrici 1943, 339AL emend. Witt and Stackebrandt 1990, 370 emend. Wellington, Stackebrandt, Sanders, Wolstrup and Jorgensen 1992, 159. In Bergey's Manual of Systematic Bacteriology pp1455–1768Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B.. vol 5 New York: Springer;[CrossRef]
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M., Dott W.. 1991; A numerical classification of the genera Streptomyces and Streptoverticillium using miniaturized physiological tests. J Gen Microbiol137:1831–1891 [CrossRef]
    [Google Scholar]
  11. Kates M.. 1986; Techniques of lipidology: isolation, analysis, and identification of lipids. In Laboratory Techniques in Biochemistry & Molecular Biology pp100–278Edited by Burdon R. H., Knippenberg P. H.. New York: Elsevier;
    [Google Scholar]
  12. Kim B. Y., Zucchi T. D., Fiedler H. P., Goodfellow M.. 2012; Streptomyces cocklensis sp. nov., a dioxamycin-producing actinomycete. Int J Syst Evol Microbiol62:279–283 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Kroppenstedt R. M.. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr5:2359–2367 [CrossRef]
    [Google Scholar]
  15. Kroppenstedt R. M., Goodfellow M.. 2006; The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora . In The Prokaryotesvol 3, 3rd edn. pp682–724Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E.. New York: Springer; [CrossRef]
    [Google Scholar]
  16. Labeda D. P.. 2001; Crossiella gen. nov., a new genus related to Streptoalloteichus . Int J Syst Evol Microbiol51:1575–1579 [CrossRef][PubMed]
    [Google Scholar]
  17. Labeda D. P., Price N.P, Kroppenstedt R. M., Donahue J. M., Williams N. M., Sells S. F.. 2009; Streptomyces atriruber sp. nov. and Streptomyces silaceus sp. nov., two novel species of equine origin. Int J Syst Evol Microbiol59: 112899–2903[CrossRef]
    [Google Scholar]
  18. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  19. Lechevalier H. A., Lechevalier M. P., Gerber N. N.. 1971; Chemical composition as a criterion in the classification of actinomycetes. Adv Appl Microbiol14:47–72 [CrossRef][PubMed]
    [Google Scholar]
  20. Pridham T. G., Hesseltine C. W., Benedict R. G.. 1958; A guide for the classification of streptomycetes according to selected groups; placement of strains in morphological sections. Appl Microbiol6:52–79[PubMed]
    [Google Scholar]
  21. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M.. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol10:1073–1095[PubMed]
    [Google Scholar]
  23. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  24. Schleissner C., Pérez M., Losada A., Rodríguez P., Crespo C., Zúñiga P., Fernández R., Reyes F., de la Calle F.. 2011; Antitumor actinopyranones produced by Streptomyces albus POR-04-15-053 isolated from a marine sediment. J Nat Prod74:1590–1596 [CrossRef][PubMed]
    [Google Scholar]
  25. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  26. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  28. Waksman S. A., Henrici A. T.. 1943; The nomenclature and classification of the actinomycetes. J Bacteriol46:337–341[PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  30. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  31. Zhang W., Li C.-T., Wang X.-B.. 2012; Study on the bioactivity of Streptomyces jingyangensis metabolite. Hubei Agricultural Sciences51:4254–4256
    [Google Scholar]
  32. Zhao G. Z., Li J., Qin S., Huang H. Y., Zhu W. Y., Xu L. H., Li W. J.. 2010; Streptomyces artemisiae sp. nov., isolated from surface-sterilized tissue of Artemisia annua L. Int J Syst Evol Microbiol60:27–32 [CrossRef][PubMed]
    [Google Scholar]
  33. Zheng R.. 2006; The effect of 5406 actinomyces on the wheat seeding. Journal of Inner Mongolia Agricultural University27:150–152
    [Google Scholar]
  34. Zheng J., Zhang X., Xin Y., Han X., Ni S., Zhang J.. 2013; Streptomyces yaanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol63:4719–4723 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000671
Loading
/content/journal/ijsem/10.1099/ijsem.0.000671
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error