1887

Abstract

A heavy metal-resistant and dimethyl disulfide-producing bacterial strain, designated 6NM-7, was isolated from wolfram mine tailing, Dayu County, Jiangxi Province, PR China. Strain 6NM-7 was aerobic, Gram-stain-negative and motile by means of a single polar flagellum. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain 6NM-7 was affiliated with the genus and was closely related to LMG 28164 (98.8 % 16S rRNA gene sequence similarity), KACC 17471 (98.4 %), KACC 12599 (97.8 %), KACC 14940 (97.3 %), KACC 13771 (97.2 %), CGMCC 1.11014 (97.1 %) and KACC 12505 (97.1 %). The DNA–DNA relatedness values between strain 6NM-7 and its closely related type strains were all below 70 %. The major respiratory quinone was unbiquinone 8 (Q-8) and the major cellular fatty acids consisted of C (33.2 %), summed feature 3 (Cω7 and/or iso-C 2-OH; 21.8 %), C cyclo (20.8 %), Cω7 (7.4 %) and C 3-OH (5.8 %). The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of strain 6NM-7 was 66.8 ± 0.6 mol%. On the basis of the results of this polyphasic taxonomic study, strain 6NM-7 should be assigned to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 6NM-7 ( = DSM 27523 = KCTC 42761).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000670
2016-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/50.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000670&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993 [PubMed].
    [Google Scholar]
  2. Busse H. J., Hauser E., Kämpfer P.. ( 2005;). Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov.. Int J Syst Evol Microbiol 55: 2565–2569 [CrossRef] [PubMed].
    [Google Scholar]
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  4. Coosemans J.. ( 2005;). Dimethyl disulphide (DMDS): a potential novel nematicide and soil disinfectant. Acta Hortic 698: 57–64 [CrossRef].
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  6. Du Y., Yu X., Wang G.. ( 2012;). Massilia tieshanensis sp. nov., isolated from mining soil. Int J Syst Evol Microbiol 62: 2356–2362 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dugravot S., Grolleau F., Macherel D., Rochetaing A., Hue B., Stankiewicz M., Huignard J., Lapied B.. ( 2003;). Dimethyl disulfide exerts insecticidal neurotoxicity through mitochondrial dysfunction and activation of insect K(ATP) channels. J Neurophysiol 90: 259–270 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Feng G. D., Yang S. Z., Wang Y. H., Zhang X. X., Zhao G. Z., Deng M. R., Zhu H. H.. ( 2014;). Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 64: 1697–1702 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fritsch J.. ( 2005;). Dimethyl disulfide as a new chemical potential alternative to methyl bromide in soil disinfestation in France. Acta Hortic 698: 71–76 [CrossRef].
    [Google Scholar]
  11. Heller J. J., Sunder P., Charles P., Pommier J. J., Fritsch J.. ( 2009;). Dimethyl disulfide, a new alternative to existing fumigants on strawberries in France and Italy. Acta Hortic 842: 953–956 [CrossRef].
    [Google Scholar]
  12. Hiraishi A., Ueda Y., Ishihara J., Mori T.. ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42: 457–469 [CrossRef].
    [Google Scholar]
  13. Huang C. J., Tsay J. F., Chang S. Y., Yang H. P., Wu W. S., Chen C. Y.. ( 2012;). Dimethyl disulfide is an induced systemic resistance elicitor produced by Bacillus cereus C1L. Pest Manag Sci 68: 1306–1310 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim J.. ( 2014;). Massilia kyonggiensis sp. nov., isolated from forest soil in Korea. J Microbiol 52: 378–383 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kong B. H., Li Y. H., Liu M., Liu Y., Li C. L., Liu L., Yang Z. W., Yu R.. ( 2013;). Massilia namucuonensis sp. nov., isolated from a soil sample. Int J Syst Evol Microbiol 63: 352–357 [CrossRef] [PubMed].
    [Google Scholar]
  18. La Scola B., Birtles R. J., Mallet M. N., Raoult D.. ( 1998;). Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36: 2847–2852 [PubMed].
    [Google Scholar]
  19. Meldau D. G., Meldau S., Hoang L. H., Underberg S., Wünsche H., Baldwin I. T.. ( 2013;). Dimethyl disulfide produced by the naturally associated bacterium bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25: 2731–2747 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;.
    [Google Scholar]
  22. Orthová I., Kämpfer P., Glaeser S. P., Kaden R., Busse H. J.. ( 2015;). Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 65: 56–64 [CrossRef] [PubMed].
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  25. Shen L., Liu Y., Gu Z., Xu B., Wang N., Jiao N., Liu H., Zhou Y.. ( 2015;). Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 65: 2124–2129 [CrossRef] [PubMed].
    [Google Scholar]
  26. Singh H., Du J., Won K., Yang J.-E., Yin C., Kook M., Yi T.-H.. ( 2015;). Massilia arvi sp. nov., a bacterium isolated from fallow land soil previously cultivated with Brassica oleracea and emended description of the genus Massilia. Int J Syst Evol Microbiol 65: 3690–3696 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, [CrossRef] pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  30. Weon H. Y., Kim B. Y., Son J. A., Jang H. B., Hong S. K., Go S. J., Kwon S. W.. ( 2008;). Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58: 1422–1425 [CrossRef] [PubMed].
    [Google Scholar]
  31. Weon H. Y., Kim B. Y., Hong S. B., Jeon Y. A., Koo B. S., Kwon S. W., Stackebrandt E.. ( 2009;). Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 59: 1656–1660 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000670
Loading
/content/journal/ijsem/10.1099/ijsem.0.000670
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error