1887

Abstract

A strictly anaerobic, Gram-stain-positive, non-spore-forming, rod-shaped bacterial strain, designated BS-1, was isolated from an anaerobic digestion reactor during a study of bacteria utilizing galactitol as the carbon source. Its cells were 0.3–0.5 μm × 2–4 μm, and they grew at 35–45 °C and at pH 6.0–8.0. Strain BS-1 produced H, CO, ethanol, acetic acid, butyric acid and caproic acid as metabolic end products of anaerobic fermentation. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain BS-1 represented a novel bacterial genus within the family , Cluster IV. The type strains that were most closely related to strain BS-1 were KCTC 5598 (94.5 %), KCTC 5155 (94.3 %), ATCC 27255 (92.1 %) and YUAN-3 (91.9 %). Strain BS-1 had 17.6 % and 20.9 % DNA–DNA relatedness values with DSM 1294 and DSM 753, respectively. The major components of the cellular fatty acids were C dimethyl aldehyde (DMA) (22.1 %), C aldehyde (14.1 %) and summed feature 11 (iso-C 3-OH and/or C DMA; 10.0 %). The genomic DNA G+C content was 50.0 mol%. Phenotypic and phylogenetic characteristics allowed strain BS-1 to be clearly distinguished from other taxa of the genus Cluster IV. On the basis of these data, the isolate is considered to represent a novel genus and novel species within Cluster IV, for which the name gen. nov., sp. nov. is proposed. The type species is BS-1 ( = JCM 30532 and KCCM 43048).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000665
2015-12-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4902.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000665&mimeType=html&fmt=ahah

References

  1. Blackall L. L., Burrell P. C., Gwilliam H., Bradford D., Bond P. L., Hugenholtz P.. ( 1998;). The use of 16S rDNA clone libraries to describe the microbial diversity of activated sludge communities. Water Sci Technol 37: 451–454 [CrossRef].
    [Google Scholar]
  2. Burns D. A., Heeg D., Cartman S. T., Minton N. P.. ( 2011;). Reconsidering the Sporulation Characteristics of Hypervirulent Clostridium difficile BI/NAP1/027. PLoS One 6: e24894 [CrossRef].
    [Google Scholar]
  3. Burns D. A., Minton N. P.. ( 2011;). Sporulation studies in Clostridium difficile. J Microbiol Methods 87: 133–138 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cato E. P., George W. L., Finegold S. M.. ( 1986;). Bergey's manual of systematic bacteriology. 2: 1141–1200.
    [Google Scholar]
  5. Chen S., Dong X.. ( 2004;). Acetanaerobacterium elongatum gen. nov., sp. nov., from paper mill waste water. Int J Syst Evol Microbiol 54: 2257–2262 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826 [CrossRef] [PubMed].
    [Google Scholar]
  7. Euzéby J.. ( 2010;). List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 60: 1009–1010 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Hofman-Bang J., Zheng D., Westermann P., Ahring B. K., Raskin L.. ( 2003;). Molecular ecology of anaerobic reactor systems. Adv Biochem Eng Biotechnol 81: 151–203 [PubMed].
    [Google Scholar]
  10. Hugenholtz P., Goebel B. M., Pace N. R.. ( 1998;). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180: 4765–4774.
    [Google Scholar]
  11. Hungate R. E.. ( 1950;). The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14: 1–49 [PubMed].
    [Google Scholar]
  12. Jeon B.-S., Um Y. S., Lee S.-M., Lee S.-Y., Kim H.-J., Kim Y. H., Gu M. B., Sang B.-I.. ( 2008;). Performance analysis of a proton exchange membrane fuel cell (PEMFC) integrated with a trickling bed bioreactor for biological high-rate hydrogen production. Energy Fuels 22: 83–86 [CrossRef].
    [Google Scholar]
  13. Jeon B. S., Kim B. C., Um Y., Sang B. I.. ( 2010;). Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol 88: 1161–1167 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kämpfer P., Erhart R., Beimfohr C., Böhringer J., Wagner M., Amann R.. ( 1996;). Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 32: 101–121 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim B. H., Bellows P., Datta R., Zeikus J. G.. ( 1984;). Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl Environ Microbiol 48: 764–770 [PubMed].
    [Google Scholar]
  16. Kim B. C., Park J. R., Bae J. W., Rhee S. K., Kim K. H., Oh J. W., Park Y. H.. ( 2006;). Stappia marina sp. nov., a marine bacterium isolated from the Yellow Sea. Int J Syst Evol Microbiol 56: 75–79 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G., Parker C.T Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M.. ( 2001;). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29: 173–174 [CrossRef] [PubMed].
    [Google Scholar]
  19. Meinkoth J., Wahl G.. ( 1984;). Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138: 267–284 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Moore W. E. C., Cato E. P., Holdeman L. V.. ( 1972;). Ruminococcus bromii sp. n. and emendation of the description of Ruminococcus Sijpestein. Int J Syst Bacteriol 22: 78–80 [CrossRef].
    [Google Scholar]
  22. Moore W. E. C., Johnson J. L., Holdeman L. V.. ( 1976;). Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Bacteriol 26: 238–252 [CrossRef].
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  24. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. New York: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  25. Sasser M.. ( 2001;). Identification of bacteria by gas chromatography of cellular fatty acids Technical note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  26. Snaidr J., Amann R., Huber I., Ludwig W., Schleifer K. H.. ( 1997;). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63: 2884–2896 [PubMed].
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  29. Toerien D. F.. ( 1967;). Direct-isolation studies on aerobic and facultative anaerobic bacterial flora of anaerobic digesters receiving raw sewage sludge. Water Res 1: 55–59 [CrossRef].
    [Google Scholar]
  30. Vainio E. J., Moilanen A., Koivula T. T., Bamford D. H., Hantula J.. ( 1997;). Comparison of partial 16S rRNA gene sequences obtained from activated sludge bacteria. Appl Microbiol Biotechnol 48: 73–79 [CrossRef] [PubMed].
    [Google Scholar]
  31. Xing D., Ren N., Li Q., Lin M., Wang A., Zhao L.. ( 2006;). Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater. Int J Syst Evol Microbiol 56: 755–760 [CrossRef] [PubMed].
    [Google Scholar]
  32. Yutin N., Galperin M. Y.. ( 2013;). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. Environ Microbiol 15: 2631–2641 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000665
Loading
/content/journal/ijsem/10.1099/ijsem.0.000665
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error