1887

Abstract

Strain RIPI 110 was isolated from a soil sample collected from an oil-contaminated site on Siri Island, Persian Gulf, Iran. Cells of the novel isolate were Gram-stain-negative, facultatively anaerobic, non-motile and rod-shaped. Cells divided asymmetrically by budding and formed rosette-like clusters. The optimum pH and temperature for growth were pH 7 and 30 °C, while the strain was able to grow at pH 5.5–8 and 15–35 °C. Strain RIPI 110 utilized only complex carbon sources and pyruvate as the sole carbon source and could not grow under photoautotrophic conditions. The highest 16S rRNA gene sequence similarities, 93.9, 93.9 and 93.5 %, were obtained with GJW-30, 941 and AS130, respectively. The major cellular fatty acids were summed feature 8 (Cω7/ω6), C and C cyclo ω8. Polar lipid analyses revealed that strain RIPI 110 contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, an unknown aminophospholipid and four unknown phospholipids. Ubiquinone-10 was the predominant quinone component. The DNA G+C content was 59.4 mol%. On the basis of the 16S rRNA gene sequence analysis, in combination with chemotaxonomic and physiological data, the novel isolate could not be classified in any recognized genera. Strain RIPI 110 is thus considered to represent a novel species of a new genus within the order , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is RIPI 110 ( = IBRC-M 10770 = CECT 8374).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000643
2015-12-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4743.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000643&mimeType=html&fmt=ahah

References

  1. Bushnell L. D., Haas H. F.. ( 1941;). The utilization of hydrocarbons by microorganisms. J Bacteriol 41: 653–673 [PubMed].
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  3. Embley T. M., Wait R.. ( 1994;). Structural lipids of Eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O'Donnell A. G.. New York: Wiley;.
    [Google Scholar]
  4. Hiraishi A., Ueda Y.. ( 1994;). Rhodoplanes gen. nov., a new genus of phototrophic bacteria including Rhodopseudomonas rosea as Rhodoplanes roseus comb. nov. and Rhodoplanes elegans sp. nov. Int J Syst Bacteriol 44: 665–673 [CrossRef].
    [Google Scholar]
  5. Hwang C. Y., Cho B. C.. ( 2008;). Cohaesibacter gelatinilyticus gen. nov., sp. nov., a marine bacterium that forms a distinct branch in the order Rhizobiales, and proposal of Cohaesibacteraceae fam. nov. Int J Syst Evol Microbiol 58: 267–277 [CrossRef] [PubMed].
    [Google Scholar]
  6. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  7. Kim K. K., Lee K. C., Eom M. K., Kim J. S., Kim D. S., Ko S. H., Kim B. H., Lee J. S.. ( 2014;). Variibacter gotjawalensis gen. nov., sp. nov., isolated from soil of a lava forest. Antonie van Leeuwenhoek 105: 915–924 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kuykendall L. D.. ( 2005;). Order VI. Rhizobiales ord. nov. . In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, pp. 324–574. Edited by Garrity G. M., Brenner D. J., Kreig N. R., Staley J. T.. New York: Springer;.
    [Google Scholar]
  9. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  10. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  11. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  12. Monciardini P., Cavaletti L., Schumann P., Rohde M., Donadio S.. ( 2003;). Conexibacter woesei gen. nov., sp. nov., a novel representative of a deep evolutionary line of descent within the class Actinobacteria. Int J Syst Evol Microbiol 53: 569–576 [CrossRef] [PubMed].
    [Google Scholar]
  13. Murray R.G.E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  15. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77: 4844–4846 [CrossRef].
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000643
Loading
/content/journal/ijsem/10.1099/ijsem.0.000643
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error