1887

Abstract

A novel Gram-stain-negative, aerobic, motile and rod-shaped bacterium, designated strain RSG39, was isolated from the gut of a Korean rockfish, . The 16S rRNA gene sequence analysis revealed that strain RSG39 belonged to the genus in the class and its highest sequence similarity was shared with (98.4 %). The isolate grew optimally at 20 °C, at pH 7 and with 0 % (w/v) NaCl. The main respiratory quinone of the isolate was ubiquinone Q-8. The major cellular fatty acids were C, summed feature 3 (Cω7 and/or Cω6) and summed feature 8 (Cω7 and/or Cω6). The polar lipids of the isolate were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and six unidentified lipids. The DNA–DNA hybridization values showed < 7.4 % genomic relatedness with closely related strains. The genomic DNA G+C content was 65.2 mol %. Based on phylogenetic, phenotypic, chemotaxonomic and genotypic analyses, strain RSG39 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RSG39 ( = KACC 17539 = JCM 19291).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000635
2015-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4689.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000635&mimeType=html&fmt=ahah

References

  1. Bae J. W., Rhee S. K., Park J. R., Chung W. H., Nam Y. D., Lee I., Kim H., Park Y. H.. ( 2005;). Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria. Appl Environ Microbiol 71: 8825–8835 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chang H. W., Nam Y. D., Jung M. Y., Kim K. H., Roh S. W., Kim M. S., Jeon C. O., Yoon J. H., Bae J. W.. ( 2008;). Statistical superiority of genome-probing microarrays as genomic DNA-DNA hybridization in revealing the bacterial phylogenetic relationship compared to conventional methods. J Microbiol Methods 75: 523–530 [CrossRef] [PubMed].
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1981a;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  4. Collins M. D., Jones D.. ( 1981b;). A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Bacteriol 51: 129–134 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  8. Grabovich M., Gavrish E., Kuever J., Lysenko A. M., Podkopaeva D., Dubinina G.. ( 2006;). Proposal of Giesbergeria voronezhensis gen. nov., sp. nov. and G. kuznetsovii sp. nov. and reclassification of [Aquaspirillum] anulus, [A.] sinuosum and [A.] giesbergeri as Giesbergeria anulus comb. nov., G. sinuosa comb. nov. and G. giesbergeri comb. nov., and [Aquaspirillum] metamorphum and [A.] psychrophilum as Simplicispira metamorpha gen. nov., comb. nov. and S. psychrophila comb. nov. Int J Syst Evol Microbiol 56: 569–576 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hyun D. W., Kim M. S., Shin N. R., Kim J. Y., Kim P. S., Whon T. W., Yun J. H., Bae J. W.. ( 2013;). Shimia haliotis sp. nov., a bacterium isolated from the gut of an abalone, Haliotis discus hannai. Int J Syst Evol Microbiol 63: 4248–4253 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hyun D. W., Shin N. R., Kim M. S., Kim P. S., Jung M. J., Kim J. Y., Whon T. W., Bae J. W.. ( 2014;). Polaribacter atrinae sp. nov., isolated from the intestine of a comb pen shell, Atrina pectinata. Int J Syst Evol Microbiol 64: 1654–1661 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hyun D. W., Kim J. Y., Kim M. S., Shin N. R., Kim H. S., Lee J. Y., Bae J. W.. ( 2015;). Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter. Int J Syst Evol Microbiol 65: 49–55 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kaiser P., Geyer R., Surmann P., Fuhrmann H.. ( 2012;). LC-MS method for screening unknown microbial carotenoids and isoprenoid quinones. J Microbiol Methods 88: 28–34 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Korkea-aho T. L., Heikkinen J., Thompson K. D., von Wright A., Austin B.. ( 2011;). Pseudomonas sp. M174 inhibits the fish pathogen Flavobacterium psychrophilum. J Appl Microbiol 111: 266–277 [CrossRef] [PubMed].
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. New York: Wiley;.
    [Google Scholar]
  16. Lee S.-M., Hwang U.-G., Cho S. H.. ( 2000;). Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture 187: 399–409 [CrossRef].
    [Google Scholar]
  17. Loy A., Schulz C., Lücker S., Schöpfer-Wendels A., Stoecker K., Baranyi C., Lehner A., Wagner M.. ( 2005;). 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order “Rhodocyclales”. Appl Environ Microbiol 71: 1373–1386 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lu S., Ryu S. H., Chung B. S., Chung Y. R., Park W., Jeon C. O.. ( 2007;). Simplicispira limi sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57: 31–34 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mechichi T., Stackebrandt E., Fuchs G.. ( 2003;). Alicycliphilus denitrificans gen. nov., sp. nov., a cyclohexanol-degrading, nitrate-reducing β-proteobacterium. Int J Syst Evol Microbiol 53: 147–152 [CrossRef] [PubMed].
    [Google Scholar]
  20. MIDI ( 1999;). Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI Inc;.
    [Google Scholar]
  21. Rochelle P. A., Fry J. C., Parkes R. J., Weightman A. J.. ( 1992;). DNA extraction for 16S rRNA gene analysis to determine genetic diversity in deep sediment communities. FEMS Microbiol Lett 100: 59–65 [CrossRef] [PubMed].
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  23. Santander J., Martin T., Loh A., Pohlenz C., Gatlin D. M. III, Curtiss R. III. ( 2013;). Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. Microbiology 159: 1471–1486 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  25. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  28. Tittsler R. P., Sandholzer L. A.. ( 1936;). The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 31: 575–580 [PubMed].
    [Google Scholar]
  29. Vine N. G., Leukes W. D., Kaiser H., Daya S., Baxter J., Hecht T.. ( 2004;). Competition for attachment of aquaculture candidate probiotic and pathogenic bacteria on fish intestinal mucus. J Fish Dis 27: 319–326 [CrossRef] [PubMed].
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  31. Xin H., Itoh T., Zhou P., Suzuki K., Kamekura M., Nakase T.. ( 2000;). Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 50: 1297–1303 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000635
Loading
/content/journal/ijsem/10.1099/ijsem.0.000635
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error