1887

Abstract

A novel pink-pigmented bacterial strain, UAH-SP71, was isolated from a saltern located in Santa Pola, Alicante (Spain) and the complete genome sequence was analysed and compared with that of M19-40, suggesting that the two strains constituted two separate species, with a 77.3 % ANI value. In this paper, strain UAH-SP71 was investigated in a taxonomic study using a polyphasic approach. Strain UAH-SP71 was a Gram-stain-negative, strictly aerobic, non-motile curved rod that grew in media containing 5–20 % (w/v) NaCl (optimum 10 % NaCl), at 5–40 °C (optimum 37 °C) and at pH 5–10 (optimum pH 8). Phylogenetic analysis based on the comparison of 16S rRNA gene sequences revealed that strain UAH-SP71 is a member of the genus , showing a sequence similarity of 96.5 % with M19-40. Other related species are also members of the family , including RS91 (95.5 % 16S rRNA gene sequence similarity), ATCC 49307 (95.4 %) and MLHE-1 (94.9 %). DNA–DNA hybridization between strain UAH-SP71 and M19-40 was 39 %. The major cellular fatty acids of strain UAH-SP71 were Cω6 and/or Cω7, C, Cω6 and/or Cω7, C 3-OH and C, a pattern similar to that of M19-40. Phylogenetic, phenotypic and genotypic differences between strain UAH-SP71 and M19-40 indicate that strain UAH-SP71 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UAH-SP71 ( = CECT 8396 = DSM 28542).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000621
2015-12-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4638.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000621&mimeType=html&fmt=ahah

References

  1. Arahal D. R., García M. T., Ludwig W., Schleifer K. H., Ventosa A.. ( 2001a;). Transfer of Halomonas canadensis and Halomonas israelensis to the genus Chromohalobacter as Chromohalobacter canadensis comb., nov. and Chromohalobacter israelensis comb., nov. Int J Syst Evol Microbiol 51: 1443–1448 [CrossRef] [PubMed].
    [Google Scholar]
  2. Arahal D. R., García M. T., Vargas C., Cánovas D., Nieto J. J., Ventosa A.. ( 2001b;). Chromohalobacter salexigens sp., nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51: 1457–1462 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cowan S. T., Steel K. J.. ( 1977;). Manual for the Identification of Medical Bacteria London: Cambridge University Press;.
    [Google Scholar]
  4. De Ley J., Tijtgat R.. ( 1970;). Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36: 461–474 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Fernández A. B., Ghai R., Martín-Cuadrado A.-B., Sánchez-Porro C., Rodríguez-Valera F., Ventosa A.. ( 2014a;). Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88: 623–635 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fernández A. B., Vera-Gargallo B., Sánchez-Porro C., Ghai R., Papke R. T., Rodríguez-Valera F., Ventosa A.. ( 2014b;). Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5: 196 [CrossRef] [PubMed].
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  10. Ghai R., Pašić L., Fernández A. B., Martín-Cuadrado A.-B., Mizuno C. M., McMahon K. D., Papke R. T., Stepanauskas R., Rodriguez-Brito B., other authors. ( 2011;). New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1: 135 [CrossRef] [PubMed].
    [Google Scholar]
  11. Johnson J. L.. ( 1994;). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  12. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  13. Konstantinidis K. T., Tiedje J. M.. ( 2005;). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102: 2567–2572 [CrossRef] [PubMed].
    [Google Scholar]
  14. León M. J., Fernández A. B., Ghai R., Sánchez-Porro C., Rodríguez-Valera F., Ventosa A.. ( 2014;). From metagenomics to pure culture: isolation and characterization of the moderately halophilic bacterium Spiribacter salinus gen., nov., sp., nov. Appl Environ Microbiol 80: 3850–3857 [CrossRef] [PubMed].
    [Google Scholar]
  15. López-Pérez M., Ghai R., León M. J., Rodríguez-Olmos Á., Copa-Patiño J. L., Soliveri J., Sánchez-Porro C., Ventosa A., Rodriguez-Valera F.. ( 2013;). Genomes of Spiribacter, a streamlined, successful halophilic bacterium. BMC Genomics 14: 787 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  18. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  19. MIDI ( 2008;). Sherlock Microbial Identification System Operating Manual version 6.1 Newark, DE: MIDI Inc;.
    [Google Scholar]
  20. Owen R. J., Hill L. R.. ( 1979;). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, 2nd edn., pp. 277–296. Edited by Skinner F. A., Lovelock D. W.. London: Academic Press;.
    [Google Scholar]
  21. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1984;). Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34: 287–292 [CrossRef].
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  23. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A.. ( 2009;). Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. Int J Syst Evol Microbiol 59: 397–405 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc:.
  25. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  26. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P.A.D., Kämpfer P., Maiden M.C.J., Nesme X., Rosselló-Mora R., Swings J., other authors. ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047 [PubMed].
    [Google Scholar]
  27. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128: 1959–1968.
    [Google Scholar]
  28. Ventosa A., Fernández A. B., León M. J., Sánchez-Porro C., Rodríguez-Valera F.. ( 2014;). The Santa Pola saltern as a model for studying the microbiota of hypersaline environments. Extremophiles 18: 811–824 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ventosa A., de la Haba R. R., Sánchez-Porro C., Papke R. T.. ( 2015;). Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25: 80–87 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000621
Loading
/content/journal/ijsem/10.1099/ijsem.0.000621
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error