1887

Abstract

An aerobic, Gram-stain-negative, rod or spiral-shaped diazotrophic bacterium (designated strain CC-LY788), was isolated from agricultural soil in Taiwan. Strain CC-LY788 was able to grow at 25–40 °C, pH 6.0–8.0 and tolerated NaCl to 2.0% (w/v). Positive for nitrogen fixation with the activity recorded as 6.5 nmol ethylene h. Strain CC-LY788 showed highest 16S rRNA gene sequence similarity to DSM 19922 (97.2%) and DSM 19657 (97.1%) and lower sequence similarities ( < 96.6%) to all other species of the genus . According to the DNA–DNA hybridization, the relatedness values of strain CC-LY788 with DSM 19922 and DSM 19657 were 51.1 ± 5.5% and 46.8 ± 2.1%, respectively. Strain CC-LY788 was positive for the rapid identification of the genus-specific primer set. The respiratory quinone system was ubiquinone (Q-10) and the DNA G+C content was 69.8 mol%. The major fatty acids found in strain CC-LY788 were C, C 2-OH, C 3-OH/C iso I (summed feature 2), Cω7/Cω6 (summed feature 3), C ante/Cω6,9 (summed feature 5) and Cω7/Cω6 (summed feature 8). Based on the phylogenetic, phenotypic and chemotaxonomic features, strain CC-LY788 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC-LY788 ( = BCRC 80569 = JCM 18820).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000618
2015-12-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4601.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000618&mimeType=html&fmt=ahah

References

  1. Aziz A., Martin-Tanguy J., Larher F.. ( 1997;). Plasticity of polyamine metabolism associated with high osmotic stress in rape leaf discs and with ethylene treatment. Plant Growth Regul 21: 153–163 [CrossRef].
    [Google Scholar]
  2. Bashan Y., Holguin G., de-Bashan L. E.. ( 2004;). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 50: 521–577 [CrossRef] [PubMed].
    [Google Scholar]
  3. Beijerinck M. W.. ( 1925;). Über ein Spirillum, welches freien Stickstoff binden kann?. Zentralbl Bakteriol 63: 353–359.
    [Google Scholar]
  4. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  5. Döbereiner J., Day J. M.. ( 1976;). Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. . In Proceedings of the First International Symposium on N2 Fixation, pp. 518–538. Edited by Newton W. E., Nyman C. J.. Pullman: Washington State University Press;.
    [Google Scholar]
  6. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  10. Hardy R. W. F., Burns R. C., Holsten R. D.. ( 1973;). Applications of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5: 47–81 [CrossRef].
    [Google Scholar]
  11. Hartmann A., Baldani J. I.. ( 2003;). The Genus Azospirillum. . In The Prokaryotes, pp. 114–140. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Wiley;.
    [Google Scholar]
  12. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y.. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 8: 557–561 [PubMed].
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kirchhof G., Reis V. M., Baldani J. I., Eckert B., Döebereiner J., Hartmann A.. ( 1997;). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45–55 [CrossRef].
    [Google Scholar]
  16. Koch B., Evans H. J.. ( 1966;). Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol 41: 1748–1750 [CrossRef] [PubMed].
    [Google Scholar]
  17. Ladha J. K., So R. B., Watanabe I.. ( 1987;). Composition of Azospirillum species associated with wetland rice plant grown in different soils. Plant Soil 102: 127–129 [CrossRef].
    [Google Scholar]
  18. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M.. ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60: 2832–2837 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F.. ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59: 761–765 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lin S.-Y., Shen F.-T., Young C.-C.. ( 2011;). Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie van Leeuwenhoek 99: 837–844 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lin S.-Y., Shen F.-T., Young L.-S., Zhu Z.-L., Chen W.-M., Young C.-C.. ( 2012;). Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 62: 1185–1190 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lin S.-Y., Liu Y.-C., Hameed A., Hsu Y.-H., Lai W.-A., Shen F.-T., Young C.-C.. ( 2013;). Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 63: 3762–3768 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lin S.-Y., Hameed A., Shen F.-T., Liu Y.-C., Hsu Y.-H., Shahina M., Lai W.-A., Young C.-C.. ( 2014;). Description of Niveispirillum fermenti gen. nov.,sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 105: 1149–1162 [CrossRef] [PubMed].
    [Google Scholar]
  24. Madison L. L., Huisman G. W.. ( 1999;). Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63: 21–53 [PubMed].
    [Google Scholar]
  25. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007;). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57: 620–624 [CrossRef] [PubMed].
    [Google Scholar]
  26. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P.. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  28. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  30. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 32–34. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  31. Paisley R.. ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI Inc;.
    [Google Scholar]
  32. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152: 95–103 [CrossRef] [PubMed].
    [Google Scholar]
  33. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J.. ( 1987;). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37: 43–51 [CrossRef].
    [Google Scholar]
  34. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  35. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  36. Saxena B., Modi M., Modi V. V.. ( 1986;). Isolation and characterization of siderophores from Azospirillum lipoferum D-2. J Gen Microbiol 132: 2219–2224 [CrossRef].
    [Google Scholar]
  37. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35: 151–154 [CrossRef].
    [Google Scholar]
  38. Seshadri S., Muthukumarasamy R., Lakshinarasimhan C., Ignacimuthu S.. ( 2000;). Solubilization of inorganic phosphates by Azospirillum halopraeferans. Curr Sci 79: 565–567.
    [Google Scholar]
  39. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  40. Steenhoudt O., Vanderleyden J.. ( 2000;). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24: 487–506 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  42. Tarrand J. J., Krieg N. R., Döbereiner J.. ( 1978;). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24: 967–980 [CrossRef] [PubMed].
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  44. Thuler D. S., Floh E. I., Handro W., Barbosa H. R.. ( 2003;). Plant growth regulators and amino acids released by Azospirillum sp. in chemically defined media. Lett Appl Microbiol 37: 174–178 [CrossRef] [PubMed].
    [Google Scholar]
  45. Tien T. M., Gaskins M. H., Hubbell D. H.. ( 1979;). Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37: 1016–1024 [PubMed].
    [Google Scholar]
  46. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  47. Young C.-C., Hupfer H., Siering C., Ho M.-J., Arun A. B., Lai W.-A., Rekha P. D., Shen F.-T., Hung M.-H., other authors. ( 2008;). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58: 959–963 [CrossRef] [PubMed].
    [Google Scholar]
  48. Young C.-C., Lin S.-Y., Shen F.-T., Lai W.-A.. ( 2015;). Molecular tools for identification and characterization of plant growth promoting rhizobacteria with emphasis in Azospirillum spp. . In Handbook for Azospirillum, pp. 27–44. Edited by Cassán F. D., Okon Y., Creus C. M.. New York: Springer; [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000618
Loading
/content/journal/ijsem/10.1099/ijsem.0.000618
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error