sp. nov., isolated from a subterranean salt mine Free

Abstract

Two halophilic archaeal strains, Q85 and Q86, were isolated from a subterranean salt mine in Yunnan, China. Cells were rod-shaped, Gram-stain-negative and motile. Colonies were red, smooth, convex and round (1.0–2.0 mm in diameter). The orthologous 16S rRNA and ′ gene sequences of these two strains were almost identical (99.5 and 99.7 % similarities). Their closest relatives were BG-1 (98.0–98.1 % 16S rRNA gene sequence similarity), 31-hong (97.6–97.7 %) and 9-3 (97.5–97.6 %). The level of DNA–DNA relatedness between strains Q85 and Q86 was 90 %, while that between Q85 and other related strains was less than 30 % (29 % for BG-1, 25 % for 31-hong and 22 % for 9-3). Optimal growth of the two novel strains was observed with 20 % (w/v) NaCl and at 42–45 °C under aerobic conditions, with a slight difference in optimum Mg concentration (0.7 M for Q85, 0.5 M for Q86) and a notable difference in optimum pH (pH 7.5 for Q85, pH 6.6 for Q86). Anaerobic growth occurred with nitrate, but not with -arginine or DMSO. The major polar lipids of the two strains were identical, including phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and sulfated diglycosyl diether, which are the major lipids of the genus . The G+C contents of strains Q85 and Q86 were 66.3 and 66.8 %, respectively. Based on the phenotypic, chemotaxonomic and phylogenetic properties of strains Q85 and Q86, a novel species, sp. nov., is proposed. The type strain is Q85 ( = CGMCC 1.15057 = JCM 30665).

Funding
This study was supported by the:
  • National Natural Science Foundation of China
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000605
2015-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4526.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000605&mimeType=html&fmt=ahah

References

  1. Bi G. H. ( 1996;). Salt geological characteristic and the history of its survey of Yunnan. Salt Industry History Research 3 5559 (in Chinese) .
    [Google Scholar]
  2. Cui H. L., Tohty D., Zhou P. J., Liu S. J. ( 2006;). Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 56 16311634 [View Article] [PubMed] .
    [Google Scholar]
  3. Cui H. L., Zhou P. J., Oren A., Liu S. J. ( 2009;). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . Extremophiles 13 3137 [View Article] [PubMed] .
    [Google Scholar]
  4. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [View Article] [PubMed] .
    [Google Scholar]
  5. Dussault H. P. ( 1955;). An improved technique for staining red halophilic bacteria. J Bacteriol 70 484485 [PubMed].
    [Google Scholar]
  6. Dyall-Smith M. ( 2009;). The halohandbook: protocols for haloarchaeal genetics v.7.2. p. 118. http://www.haloarchaea.com/resources/halohandbook/.
  7. Gonzalez C., Gutierrez C., Ramirez C. ( 1978;). Halobacterium vallismortis sp. nov., An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24 710715 [View Article] [PubMed]
    [Google Scholar]
  8. Castillo A. M., Pagaling E., Heaphy S., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E. ( 2008;). Halorubrum kocurii sp. nov., an archaeon isolated from a saline lake. Int J Syst Evol Microbiol 58 20312035 [View Article] [PubMed] .
    [Google Scholar]
  9. Hall T. A. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41 9598.
    [Google Scholar]
  10. Han D., Cui H. L. ( 2015;). Halorubrum laminariae sp. nov., isolated from the brine of salted brown alga Laminaria . Antonie van Leeuwenhoek 107 217223 [View Article] [PubMed] .
    [Google Scholar]
  11. Jaakkola S. T., Zerulla K., Guo Q., Liu Y., Ma H., Yang C., Bamford D. H., Chen X., Soppa J., Oksanen H. M. ( 2014;). Halophilic archaea cultivated from surface sterilized middle-late Eocene rock salt are polyploid. PLoS One 9 e110533 [View Article] [PubMed] .
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed] .
    [Google Scholar]
  13. Li Y., Xiang H., Liu J., Zhou M., Tan H. ( 2003;). Purification and biological characterization of halocin C8, a novel peptide antibiotic from Halobacterium strain AS7092. Extremophiles 7 401407 [View Article] [PubMed] .
    [Google Scholar]
  14. Marmur J., Doty P. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5 109118 [View Article] [PubMed] .
    [Google Scholar]
  15. McGenity T. J., Grant W. D. ( 1995;). Transfer of Halobacterium saccharovorum, Halobacterium sodomense, Halobacterium trapanicum NRC 34021 and Halobacterium lacusprofundi to the genus Halorubrum gen. nov., as Halorubrum saccharovorum comb. nov., Halorubrum sodomense comb. nov., Halorubrum trapanicum comb. nov., and Halorubrum lacusprofundi comb. nov. Syst Appl Microbiol 18 237243 [View Article].
    [Google Scholar]
  16. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B' (rpoB') gene. Int J Syst Evol Microbiol 60 23982408 [View Article] [PubMed] .
    [Google Scholar]
  17. Oren A., Ventosa A., Grant W. D. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales . Int J Syst Bacteriol 47 233238 [View Article].
    [Google Scholar]
  18. Oren A., Arahal D. R., Ventosa A. ( 2009;). Emended descriptions of genera of the family Halobacteriaceae . Int J Syst Evol Microbiol 59 637642 [View Article] [PubMed] .
    [Google Scholar]
  19. Owen R. J., Pitcher D. ( 1985;). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. . In Chemical Methods in Bacterial Systematics, pp. 6793. Edited by Goodfellow M., Minnikin D. E. London: Academic Press;.
    [Google Scholar]
  20. Park J. S., Vreeland R. H., Cho B. C., Lowenstein T. K., Timofeeff M. N., Rosenzweig W. D. ( 2009;). Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7 515523 [View Article] [PubMed] .
    [Google Scholar]
  21. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  22. Sambrook J., Russell D. W. (editors). ( 2001). Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  23. Sankaranarayanan K., Lowenstein T. K., Timofeeff M. N., Schubert B. A., Lum J. K. ( 2014;). Characterization of ancient DNA supports long-term survival of Haloarchaea . Astrobiology 14 553560 [View Article] [PubMed] .
    [Google Scholar]
  24. Schubert B. A., Lowenstein T. K., Timofeeff M. N., Parker M. A. ( 2010;). Halophilic Archaea cultured from ancient halite, Death Valley, California. Environ Microbiol 12 440454 [View Article] [PubMed] .
    [Google Scholar]
  25. Smibert R. M., Krieg N. R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed] .
    [Google Scholar]
  27. Vreeland R. H., Jones J., Monson A., Rosenzweig W. D., Lowenstein T., Timofeeff M., Satterfield C., Cho B. C., Park J. S., other authors. ( 2007;). The isolation of live Cretaceous (121-112 million years old) halophilic Archaea from primary salt crystals. Geomicrobiol J 24 275282 [View Article].
    [Google Scholar]
  28. Yim K. J., Cha I. T., Lee H. W., Song H. S., Kim K. N., Lee S. J., Nam Y. D., Hyun D. W., Bae J. W., other authors. ( 2014;). Halorubrum halophilum sp. nov., an extremely halophilic archaeon isolated from a salt-fermented seafood. Antonie van Leeuwenhoek 105 603612 [View Article] [PubMed] .
    [Google Scholar]
  29. Zhang W. J., Cui H. L. ( 2014;). Halorubrum salinum sp. nov., isolated from a marine solar saltern. Arch Microbiol 196 395400 [View Article] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000605
Loading
/content/journal/ijsem/10.1099/ijsem.0.000605
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed