1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, long rod-shaped bacterium, designated strain GYP-15, was isolated from the culture broth of a marine microalga, sp. 122. Phylogenetic analyses revealed that strain GYP-15 shared 90.6 % 16S rRNA gene sequence similarity with its closest relative, KCTC 12183, and represents a distinct phylogenetic lineage in a robust clade consisting of GYP-15 and members of the genera and in the order . Chemotaxonomic and physiological characteristics, including major cellular fatty acids, NaCl tolerance and pattern of carbon source utilization, could also readily distinguish strain GYP-15 from all established genera and species. Thus, it is concluded that strain GYP-15 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is GYP-15 ( = MCCC 1K01163 = KCTC 42667). Based on phylogenetic results, 16S rRNA gene signature nucleotide pattern and some physiological characteristics, the three genera , and are proposed to make up a novel family, fam. nov., in the order

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000601
2015-12-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4488.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000601&mimeType=html&fmt=ahah

References

  1. Ahn J., Park J. W., McConnell J. A., Ahn Y. B., Häggblom M. M.. ( 2011;). Kangiella spongicola sp. nov., a halophilic marine bacterium isolated from the sponge Chondrilla nucula. Int J Syst Evol Microbiol 61: 961–964 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [PubMed].
    [Google Scholar]
  4. Bruns A., Berthe-Corti L.. ( 1999;). Fundibacter jadensis gen. nov., sp. nov., a new slightly halophilic bacterium, isolated from intertidal sediment. Int J Syst Bacteriol 49: 441–448 [CrossRef] [PubMed].
    [Google Scholar]
  5. Collins M. D.. ( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 345–401. Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;.
    [Google Scholar]
  6. Dong X. Z., Cai M. Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press;.
    [Google Scholar]
  7. Fagervold S. K., Urios L., Intertaglia L., Batailler N., Lebaron P., Suzuki M. T.. ( 2013;). Pleionea mediterranea gen. nov., sp. nov., a gammaproteobacterium isolated from coastal seawater. Int J Syst Evol Microbiol 63: 2700–2705 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Fernández-Martínez J., Pujalte M. J., García-Martínez J., Mata M., Garay E., Rodríguez-Valeral F.. ( 2003;). Description of Alcanivorax venustensis sp. nov. and reclassification of Fundibacter jadensis DSM 1 21 78T (Bruns and Berthe-Corti 1999) as Alcanivorax jadensis comb. nov., members of the emended genus Alcanivorax. Int J Syst Evol Microbiol 53: 331–338 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) ( 1994;). Methods for General and Molecular Bacteriology., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  12. Golyshin P. N., Harayama S., Timmis K. N., Yakimov M. M.. ( 2005;). Family II. Alcanivoraceae fam. nov.. In Bergey's Manual of Systematic Bacteriology, p. 295. Edited by Brenner D. J., Krieg N. R., Staley J. R., Garrity G. M..vol. 2, 2nd edn.., New York: Springer;.
    [Google Scholar]
  13. Jean W. D., Huang S. P., Chen J. S., Shieh W. Y.. ( 2012;). Kangiella taiwanensis sp. nov. and Kangiella marina sp. nov., marine bacteria isolated from shallow coastal water. Int J Syst Evol Microbiol 62: 2229–2234 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton, FL: CRC Press;.
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim J. H., Ward A. C., Kim W.. ( 2015;). Kangiella chungangensis sp. nov. isolated from a marine sand. Antonie van Leeuwenhoek 107: 1291–1298 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  18. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  19. Kwon K. K., Oh J. H., Yang S. H., Seo H. S., Lee J. H.. ( 2015;). Alcanivorax gelatiniphagus sp. nov., a marine bacterium isolated from tidal flat sediments enriched with crude oil. Int J Syst Evol Microbiol 65: 2204–2208 [CrossRef].
    [Google Scholar]
  20. Lai Q., Wang L., Liu Y., Fu Y., Zhong H., Wang B., Chen L., Wang J., Sun F., Shao Z.. ( 2011;). Alcanivorax pacificus sp. nov., isolated from a deep-sea pyrene-degrading consortium. Int J Syst Evol Microbiol 61: 1370–1374 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lai Q., Wang J., Gu L., Zheng T., Shao Z.. ( 2013;). Alcanivorax marinus sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 63: 4428–4432 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  23. Lee S. Y., Park S., Oh T. K., Yoon J. H.. ( 2013;). Kangiella sediminilitoris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 63: 1001–1006 [CrossRef] [PubMed].
    [Google Scholar]
  24. Liu C., Shao Z.. ( 2005;). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 55: 1181–1186 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  26. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Rosselló-Móra R.. ( 2011;). Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol 34: 169–170 [CrossRef] [PubMed].
    [Google Scholar]
  27. Myers E. W., Miller W.. ( 1988;). Optimal alignments in linear space. Comput Appl Biosci 4: 11–17 [PubMed].
    [Google Scholar]
  28. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rahul K., Sasikala Ch., Tushar L., Debadrita R., Ramana ChV. ( 2014;). Alcanivorax xenomutans sp. nov., a hydrocarbonoclastic bacterium isolated from a shrimp cultivation pond. Int J Syst Evol Microbiol 64: 3553–3558 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rivas R., García-Fraile P., Peix A., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2007;). Alcanivorax balearicus sp. nov., isolated from Lake Martel. Int J Syst Evol Microbiol 57: 1331–1335 [CrossRef] [PubMed].
    [Google Scholar]
  31. Romanenko L. A., Tanaka N., Frolova G. M., Mikhailov V. V.. ( 2010;). Kangiella japonica sp. nov., isolated from a marine environment. Int J Syst Evol Microbiol 60: 2583–2586 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  33. Silveira C. B., Thompson F.. ( 2014;). The family Alcanivoraceae. . In The Prokaryotes – Gammaproteobacteria, vol. 9, , 4th edn.., p. 59. Edited by Rosenberg E., DeLong E. F., Stackebrandt E., Lory S., Thompson F.. New York: Springer;.
    [Google Scholar]
  34. Swofford D. L.. ( 1993;). paup: Phylogenetic analysis using parsimony, version 3.1.1 Champaign, IL: Illinois Natural History Survey;.
    [Google Scholar]
  35. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  37. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington DC: American Society for Microbiology;.
    [Google Scholar]
  38. Wu Y., Lai Q., Zhou Z., Qiao N., Liu C., Shao Z.. ( 2009;). Alcanivorax hongdengensis sp. nov., an alkane-degrading bacterium isolated from surface seawater of the straits of Malacca and Singapore, producing a lipopeptide as its biosurfactant. Int J Syst Evol Microbiol 59: 1474–1479 [CrossRef] [PubMed].
    [Google Scholar]
  39. Xu F. D., Li X. G., Xiao X., Xu J.. ( 2015;). Kangiella profundi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 65: 2315–2319 [CrossRef] [PubMed].
    [Google Scholar]
  40. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R., Abraham W. R., Lünsdorf H., Timmis K. N.. ( 1998;). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48: 339–348 [CrossRef] [PubMed].
    [Google Scholar]
  41. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K. H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. ( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12: 635–645 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yoon J. H., Oh T. K., Park Y. H.. ( 2004;). Kangiella koreensis gen. nov., sp. nov. and Kangiella aquimarina sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54: 1829–1835 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yoon J. H., Kang S. J., Lee S. Y., Lee J. S., Oh T. K.. ( 2012;). Kangiella geojedonensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62: 511–514 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000601
Loading
/content/journal/ijsem/10.1099/ijsem.0.000601
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error