Classification of strain CCM 4446 as sp. nov. Free

Abstract

Strain CCM 4446, with notable biodegradation capabilities, was investigated in this study in order to elucidate its taxonomic position. Chemotaxonomic analyses of quinones, polar lipids, mycolic acids, polyamines and the diamino acid of the cell-wall peptidoglycan corresponded with characteristics of the genus . Phylogenetic analysis, based on the 16S rRNA gene sequence, assigned strain CCM 4446 to the genus and placed it in the 16S rRNA gene clade. Further analysis of and gene sequences, automated ribotyping with RI restriction endonuclease, whole-cell protein profiling, DNA–DNA hybridization and extensive biotyping enabled differentiation of strain CCM 4446 from all phylogenetically closely related species, i.e., and The results obtained show that the strain investigated represents a novel species within the genus , for which the name sp. nov., is proposed. The type strain is CCM 4446 ( = LMG 28633).

Funding
This study was supported by the:
  • Ministry of Education, Youth and Sports of the Czech Republic (Award CZ.1.07/2.3.00/20.0183)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000584
2015-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4381.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000584&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47 3952 [View Article].
    [Google Scholar]
  2. Atlas R. M. ( 2010). Handbook of Microbiological Media , 4th edn. New York: CRC Press, Taylor & Francis Group; [View Article].
    [Google Scholar]
  3. Bell K. S., Philp J. C., Aw D.W.J., Christofi N. ( 1998;). The genus Rhodococcus . J Appl Microbiol 85 195210 [View Article] [PubMed] .
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52 15511558 [PubMed].
    [Google Scholar]
  5. Damborský J., Koča J. ( 1999;). Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng 12 989998 [View Article] [PubMed] .
    [Google Scholar]
  6. Damborský J., Nyandoroh M. G., Ne˘mec M., Holoubek I., Bull A. T., Hardman D. J. ( 1997;). Some biochemical properties and the classification of a range of bacterial haloalkane dehalogenases. Biotechnol Appl Biochem 26 1925 [PubMed].
    [Google Scholar]
  7. de Carvalho C. C., Costa S. S., Fernandes P., Couto I., Viveiros M. ( 2014;). Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus . Front Physiol 5 133 [View Article] [PubMed] .
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39 224229 [View Article].
    [Google Scholar]
  9. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kämpfer P., Busse H.-J. ( 2012;). Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 62 21942200 [View Article] [PubMed] .
    [Google Scholar]
  10. Gevers D., Huys G., Swings J. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205 3136 [View Article] [PubMed] .
    [Google Scholar]
  11. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44 11481153 [View Article].
    [Google Scholar]
  12. Janáková I., Vojtková H. ( 2012;). Application of flotation and biodegradation to eliminate persistent organic pollutants in the influent stream of Cerny Prikop. . In Microbes in Applied Research, pp. 28–32. Edited by Mendez-Vilas A. Singapore: World Scientific Publishing; [View Article].
    [Google Scholar]
  13. Jones A. L., Goodfellow M. ( 2012;). Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998a. . In Bergey's Manual of Systematic Bacteriology, The Actinobacteria, Part A vol. 5, pp. 437464. Edited by Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Ludwig W., Suzuki K.-i., Parte A. New York: Springer;.
    [Google Scholar]
  14. Kämpfer P., Dott W., Martin K., Glaeser S. P. ( 2014;). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64 755761 [View Article] [PubMed] .
    [Google Scholar]
  15. Kašáková H., Vojtková H., Jablonka R. ( 2012;). Biodegradation of oil sludge using bacterial organisms. . In 12th International Multidisciplinary Scientific GeoConference SGEM SGEM Conference Proceedings, vol. 2. Sofia STEF92 Technology, pp. 435–440. Albena, Bulgaria: IJSEM .
    [Google Scholar]
  16. Klatte S., Kroppenstedt R. M., Rainey F. A. ( 1994;). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst Appl Microbiol 17 355360 [View Article].
    [Google Scholar]
  17. Lang S., Philp J. C. ( 1998;). Surface-active lipids in rhodococci . Antonie van Leeuwenhoek 74 5970 [View Article] [PubMed] .
    [Google Scholar]
  18. MacFaddin J. F. ( 2000). Biochemical Tests for Identification of Medical Bacteria , 3rd edn. USA: Lippincott Williams & Wilkins;.
    [Google Scholar]
  19. Martínková L., Uhnáková B., Pátek M., Nešvera J., Křen V. ( 2009;). Biodegradation potential of the genus Rhodococcus . Environ Int 35 162177 [View Article] [PubMed] .
    [Google Scholar]
  20. Mesbah M., Whitman W. B. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479 297306 [View Article] [PubMed] .
    [Google Scholar]
  21. Poelarends G. J., Zandstra M., Bosma T., Kulakov L. A., Larkin M. J., Marchesi J. R., Weightman A. J., Janssen D. B. ( 2000;). Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J Bacteriol 182 27252731 [View Article] [PubMed] .
    [Google Scholar]
  22. Roach P.C.J., Ramsden D. K., Hughes J., Williams P. ( 2003;). Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile. Biosens Bioelectron 19 7378 [View Article] [PubMed] .
    [Google Scholar]
  23. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  24. Scholtz R., Leisinger T., Suter F., Cook A. M. ( 1987a;). Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J Bacteriol 169 50165021 [PubMed].
    [Google Scholar]
  25. Scholtz R., Schmuckle A., Cook A. M., Leisinger T. ( 1987b;). Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. strain HA1. J Gen Microbiol 133 267274.
    [Google Scholar]
  26. Scholtz R., Messi F., Leisinger T., Cook A. M. ( 1988;). Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1. Appl Environ Microbiol 54 30343038 [PubMed].
    [Google Scholar]
  27. Schumann P. ( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiology vol. 38, pp. 101129. Edited by Rainey F., Oren A. London: Academic Press; [View Article].
    [Google Scholar]
  28. Stolz A., Busse H.-J., Kämpfer P. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57 572576 [View Article] [PubMed] .
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [View Article] [PubMed] .
    [Google Scholar]
  30. Táncsics A., Benedek T., Farkas M., Máthé I., Márialigeti K., Szoboszlay S., Kukolya J., Kriszt B. ( 2014;). Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii . Int J Syst Evol Microbiol 64 298301 [View Article] [PubMed] .
    [Google Scholar]
  31. Tindall B. J. ( 1990a;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66 199202 [View Article].
    [Google Scholar]
  32. Tindall B. J. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13 128130 [View Article].
    [Google Scholar]
  33. Vojtková H., Mašlaňová I., Sedláček I., Švanová P., Janulková R. ( 2012;). Removal of heavy metals from wastewater by a Rhodococcus sp. bacterial strain. . In 12th International Multidisciplinary Scientific GeoConference SGEM SGEM Conference Proceedings, vol. 5. Sofia STEF92 Technology. pp. 685–691. Albena, Bulgaria .
    [Google Scholar]
  34. Warhurst A. M., Fewson C. A. ( 1994;). Biotransformations catalyzed by the genus Rhodococcus . Crit Rev Biotechnol 14 2973 [View Article] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000584
Loading
/content/journal/ijsem/10.1099/ijsem.0.000584
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed