1887

Abstract

Two novel Gram-stain-positive, rod-shaped, non-motile, non-endospore-forming bacterial strains, S7 and IB5, were isolated from Khavda, India. Based on 16S rRNA gene sequence analysis they were identified as belonging to the class order , family , and were most closely related to CGMCC 1.6134 (97.3 %, sequence similarity), LMG 24571 (96.9 %), KCTC 3912 (95.6 %) and DSM 18341 (95.3 %). However, these strains shared only 88.2 % 16S rRNA gene sequence similarity with subsp. DSM 10, indicating that strains S7 and IB5 might not be members of the genus . The DNA–DNA relatedness of these strains with CGMCC 1.6134 was 42.9 ± 0.8. The cell-wall peptidoglycan of strains S7 and IB5 contained -diaminopimelic acid, while the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, a phospholipid and three unknown lipids. The predominant isoprenoid quinone was MK-7. anteiso-C was the predominant fatty acid. The results of the phylogenetic, chemotaxonomic and biochemical tests allowed a clear differentiation of strains S7 and IB5, suggesting that they represent a novel member of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is S7 ( = KCTC 33658 = CGMCC 1.15324). Based on the results of the present study, it is also suggested that and should be transferred to this novel genus, as comb. nov. and comb. nov., respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000572
2015-11-01
2021-04-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4270.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000572&mimeType=html&fmt=ahah

References

  1. Albert R.A., Archambault J., Lempa M., Hurst B., Richardson C., Gruenloh S., Duran M., Worliczek H.L., Huber B.E., other authors. ( 2007;). Proposal of Viridibacillus gen. nov. and reclassification of Bacillus arvi, Bacillus arenosi and Bacillus neidei as Viridibacillus arvi gen. nov., comb. nov., Viridibacillus arenosi comb. nov. and Viridibacillus neidei comb. nov. Int J Syst Evol Microbiol 57 27292737 [CrossRef] [PubMed] .
    [Google Scholar]
  2. Kates M. ( 1972). Techniques of Lipidology., New York: Elsevier; [CrossRef].
    [Google Scholar]
  3. Kates M. ( 1986). Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids., Amsterdam: Elsevier;.
    [Google Scholar]
  4. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed].
    [Google Scholar]
  5. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [CrossRef] [PubMed].
    [Google Scholar]
  6. Lim J.-M., Jeon C.O., Lee S.-M., Lee J.C., Xu L.H., Jiang C.L., Kim C.J. ( 2006;). Bacillus salarius sp. nov., a halophilic, spore-forming bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 56 373377 [CrossRef] [PubMed].
    [Google Scholar]
  7. Logan N.A., De Vos P. ( 2009;). Family I, Bacillaceae. . In Bergey's Manual of Systematic Bacteriology, pp. 2129. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. , 2nd edn.., Dordrecht: Springer;.
    [Google Scholar]
  8. Logan N.A., Berge O., Bishop A.H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59 21142121 [CrossRef] [PubMed].
    [Google Scholar]
  9. Marmur J. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3 208218 [CrossRef].
    [Google Scholar]
  10. Meier-Kolthoff J.P., Göker M., Spröer C., Klenk H.-P. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195 413418 [CrossRef] [PubMed].
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39 159167 [CrossRef].
    [Google Scholar]
  12. Oren A. ( 2002;). Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28 5663 [CrossRef] [PubMed].
    [Google Scholar]
  13. Oren A., Duker S., Ritter S. ( 1996;). The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138 135140 [CrossRef].
    [Google Scholar]
  14. Pappa A., Sánchez-Porro C., Lazoura P., Kallimanis A., Perisynakis A., Ventosa A., Drainas C., Koukkou A.I. ( 2010;). Bacillus halochares sp. nov., a halophilic bacterium isolated from a solar saltern. Int J Syst Evol Microbiol 60 14321436 [CrossRef] [PubMed].
    [Google Scholar]
  15. Reddy S.V., Aspana S., Tushar D.L., Sasikala Ch., Ramana ChV. ( 2013;). Spirochaeta sphaeroplastigenens sp. nov., a halo-alkaliphilic, obligately anaerobic spirochaete isolated from soda lake Lonar. Int J Syst Evol Microbiol 63 22232228 [CrossRef] [PubMed].
    [Google Scholar]
  16. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  17. Schleifer K.H. ( 1985;). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18 123156 [CrossRef].
    [Google Scholar]
  18. Schleifer K.H., Kandler O. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407477 [PubMed].
    [Google Scholar]
  19. Smibert R.M., Krieg N.R. ( 1981;). General characterization. . In Manual of Methods for General Microbiology, pp. 409443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  20. Smibert R.M., Krieg N.R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  21. Stackebrandt E., Ebers J. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33 152155.
    [Google Scholar]
  22. Stackebrandt E., Goebel B.M. ( 1994;). Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44 846849 [CrossRef].
    [Google Scholar]
  23. Tamaoka J., Fujimura Y.-K., Kuraishi H. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol 54 3136.
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tindall B.J. ( 1990a;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66 199202 [CrossRef].
    [Google Scholar]
  26. Tindall B.J. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13 128130 [CrossRef].
    [Google Scholar]
  27. Tourova T.P., Antonov A.S. ( 1987;). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19 333355 [CrossRef].
    [Google Scholar]
  28. Ventosa A. ( 2006;). Unusual micro-organisms from unusual habitats: hypersaline environments. . In Prokaryotic Diversity: Mechanisms and Significance, pp. 223254 Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  29. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128 19591968.
    [Google Scholar]
  30. Ventosa A., Nieto J.J., Oren A. ( 1998;). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62 504544 [PubMed].
    [Google Scholar]
  31. Wang Q.F., Li W., Liu Y.L., Cao H.H., Li Z., Guo G.Q. ( 2007;). Bacillus qingdaonensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a crude sea-salt sample collected near Qingdao in eastern China. Int J Syst Evol Microbiol 57 11431147 [CrossRef] [PubMed].
    [Google Scholar]
  32. Xue Y., Ventosa A., Wang X., Ren P., Zhou P., Ma Y. ( 2008;). Bacillus aidingensis sp. nov., a moderately halophilic bacterium isolated from Ai-Ding salt lake in China. Int J Syst Evol Microbiol 58 28282832 [PubMed]. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000572
Loading
/content/journal/ijsem/10.1099/ijsem.0.000572
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error