1887

Abstract

A Gram-stain-positive, non-motile and aerobic bacterium, designated strain DW151B, was isolated from a sludge sample of a dairy industry effluent treatment plant. 16S rRNA gene sequence analysis of strain DW151B placed it within the genus . It displayed significant similarity with recognized species of the genus: PDB9 (98.8 %), W 4937 (98.6 %), DSM 43241 (98.5 %) and YIM 65754 (97.5 %). However, strain DW151B differed from phylogenetically closely related species in various phenotypic properties. The cellular polar lipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) and phosphatidylinositol (PI) as major lipids, MK-8(H) was the major menaquinone and -diaminopimelic acid was the cell-wall peptidoglycan. The fatty acid profile consisted of C, C 9 and C 9 as main components. The presence of C and diphosphatidylglycerol as major fatty acid and polar lipid, respectively, was in accordance with chemotaxonomic markers of the genus . The DNA G+C content of strain DW151B was 69.9 mol%, a value within the limits reported for the members of this genus. Furthermore, strain DW151B showed low similarity at the whole genome level in DNA–DNA hybridization experiments with phylogenetically closely related strains. Considering the low similarity at the genome level and differences in phenotypic properties, strain DW151B is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is DW151B ( = MTCC 12279 = DSM 45625).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000565
2015-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4215.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000565&mimeType=html&fmt=ahah

References

  1. Apajalahti J.H., Kärpänoja P., Salkinoja-Salonen M.S.. ( 1986;). Rhodococcus chlorophenolicus sp. nov., a chlorophenol-mineralizing actinomycete. Int J Syst Bacteriol 36: 246–251 [CrossRef].
    [Google Scholar]
  2. Bell K.S., Philp J.C., Aw D.W., Christofi N.. ( 1998;). The genus Rhodococcus. J Appl Microbiol 85: 195–210 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chittpurna K., Singh P.K., Verma D., Pinnaka A.K., Mayilraj S., Korpole S.. ( 2011;). Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 61: 2832–2836 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B.K., Lim Y.-W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cowan S.T., Steel K.J.. ( 1965;). Manual for the Identification of Medical Bacteria., London: Cambridge University Press;.
    [Google Scholar]
  6. Gürtler V., Mayall B.C., Seviour R.. ( 2004;). Can whole genome analysis refine the taxonomy of the genus Rhodococcus?. FEMS Microbiol Rev 28: 377–403 [CrossRef] [PubMed].
    [Google Scholar]
  7. Jones A.L., Brown J.M., Mishra V., Perry J.D., Steigerwalt A.G., Goodfellow M.. ( 2004;). Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil. Int J Syst Evol Microbiol 54: 407–411 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kämpfer P., Wellner S., Lohse K., Lodders N., Martin K.. ( 2013;). Rhodococcus cerastii sp. nov. and Rhodococcus trifolii sp. nov., two novel species isolated from leaf surfaces. Int J Syst Evol Microbiol 63: 1024–1029 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kämpfer P., Dott W., Martin K., Glaeser S.P.. ( 2014;). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64: 755–761 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kuyukina M.S., Ivshina I.B.. ( 2010;). Application of Rhodococcus in bioremediation of contaminated environments. . In Biology of Rhodococcus , pp. 231–262. Edited by Alvarez H. M.. Berlin: Springer; [CrossRef].
    [Google Scholar]
  13. Lányí B.. ( 1988;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  14. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12: 195–206 [CrossRef].
    [Google Scholar]
  15. McLeod M.P., Warren R.L., Hsiao W.W., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A.L., other authors. ( 2006;). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103: 15582–15587 [CrossRef] [PubMed].
    [Google Scholar]
  16. Minnikin D.E., Hutchinson I.G., Caldicott A.B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188: 221–233 [CrossRef].
    [Google Scholar]
  17. Minnikin D., O'Donnell A., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  18. Nimaichand S., Sanasam S., Zheng L.-Q., Zhu W.-Y., Yang L.-L., Tang S.-K., Ningthoujam D.S., Li W.J.. ( 2013;). Rhodococcus canchipurensis sp. nov., an actinomycete isolated from a limestone deposit site. Int J Syst Evol Microbiol 63: 114–118 [CrossRef] [PubMed].
    [Google Scholar]
  19. Peng L., Yang C., Zeng G., Wang L., Dai C., Long Z., Liu H., Zhong Y.. ( 2014;). Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Appl Microbiol Biotechnol 98: 6847–6858 [CrossRef] [PubMed].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Sambrook J., Russell D.W., Russell D.W.. ( 2001;). Molecular Cloning, a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  23. Sato N., Murata N.. ( 1988;). Membrane lipids. Methods Enzymol 167: 251–259 [CrossRef].
    [Google Scholar]
  24. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  25. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  26. Stackebrandt E., Goebel B.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  27. Stackebrandt E., Rainey F.A., Ward-Rainey N.L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47: 479–491 [CrossRef].
    [Google Scholar]
  28. Suresh K., Mayilraj S., Chakrabarti T.. ( 2006;). Effluviibacter roseus gen. nov., sp. nov., isolated from muddy water, belonging to the family “Flexibacteraceae”. Int J Syst Evol Microbiol 56: 1703–1707 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tateno Y., Takezaki N., Nei M.. ( 1994;). Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol Biol Evol 11: 261–277 [PubMed].
    [Google Scholar]
  32. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tindall B.J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tourova T., Antonov A.. ( 1988;). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19: 333–355 [CrossRef].
    [Google Scholar]
  35. Wang Z., Xu J., Li Y., Wang K., Wang Y., Hong Q., Li W.J., Li S.P.. ( 2010;). Rhodococcus jialingiae sp. nov., an actinobacterium isolated from sludge of a carbendazim wastewater treatment facility. Int J Syst Evol Microbiol 60: 378–381 [CrossRef] [PubMed].
    [Google Scholar]
  36. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  37. Yassin A.F.. ( 2005;). Rhodococcus triatomae sp. nov., isolated from a blood-sucking bug. Int J Syst Evol Microbiol 55: 1575–1579 [CrossRef] [PubMed].
    [Google Scholar]
  38. Yoon J.-H., Kang S.-S., Cho Y.-G., Lee S.T., Kho Y.H., Kim C.-J., Park Y.-H.. ( 2000;). Rhodococcus pyridinivorans sp. nov., a pyridine-degrading bacterium. Int J Syst Evol Microbiol 50: 2173–2180 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zhao G.-Z., Li J., Zhu W.-Y., Tian S.-Z., Zhao L.-X., Yang L.-L., Xu L.H., Li W.J.. ( 2012;). Rhodococcus artemisiae sp. nov., an endophytic actinobacterium isolated from the pharmaceutical plant Artemisia annua L. Int J Syst Evol Microbiol 62: 900–905 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000565
Loading
/content/journal/ijsem/10.1099/ijsem.0.000565
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error