1887

Abstract

A beige-pigmented, oxidase-negative bacterial strain (JM-458), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458 with sequences of the type strains of closely related species of the genus showed that it shared highest sequence similarity with (98.7 %), (98.3 %), subsp. , and (all 98.2 %). 16S rRNA gene sequence similarities to all other species were below 98 %. Multilocus sequence analysis based on concatenated partial , and gene sequences showed a clear distinction of strain JM-458 from its closest related type strains. The fatty acid profile of the strain consisted of C C cyclo, iso-C 2-OH/Cω7 and Cω7 as major components. DNA–DNA hybridizations between strain JM-458 and the type strains of , and resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA–DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is JM-458 ( = DSM 29346 = CIP 110826 = LMG 28480 = CCM 8546).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000547
2015-11-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4093.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000547&mimeType=html&fmt=ahah

References

  1. Brady C., Cleenwerck I., Venter S., Vancanneyt M., Swings J., Coutinho T.. ( 2008;). Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol 31: 447–460 [CrossRef] [PubMed].
    [Google Scholar]
  2. Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P.. ( 2013;). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii and E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 36: 309–319 [CrossRef] [PubMed].
    [Google Scholar]
  3. Brosius J., Palmer M.L., Kennedy P.J., Noller H.F.. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75: 4801–4805 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chernin L., Brandis A., Ismailov Z., Chet I.. ( 1996;). Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens. Curr Microbiol 32: 208–212 [CrossRef].
    [Google Scholar]
  5. Chow J.W., Fine M.J., Shlaes D.M., Quinn J.P., Hooper D.C., Johnson M.P., Ramphal R., Wagener M.M., Miyashiro D.K., Yu V.L.. ( 1991;). Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med 115: 585–590 [CrossRef] [PubMed].
    [Google Scholar]
  6. Chung Y.R., Brenner D.J., Steigerwalt A.G., Kim B.S., Kim H.T., Cho K.Y.. ( 1993;). Enterobacter pyrinus sp. nov., an organism associated with brown leaf-spot disease of pear trees. Int J Syst Bacteriol 43: 157–161 [CrossRef].
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Felsenstein J.. ( 2005;). phylip (phylogeny inference package) version 3.6. ., Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  9. French C.E., Nicklin S., Bruce N.C.. ( 1998;). Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64: 2864–2868 [PubMed].
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R..), ( 1994;). Methods for General and Molecular Bacteriology., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  11. Gu C.T., Li C.Y., Yang L.J., Huo G.C.. ( 2014;). Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov. Int J Syst Evol Microbiol 64: 2650–2656 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hoffmann H., Stindl S., Ludwig W., Stumpf A., Mehlen A., Heesemann J., Monget D., Schleifer K.H., Roggenkamp A.. ( 2005;). Reassignment of Enterobacter dissolvens to Enterobacter cloacae as E. cloacae subspecies dissolvens comb. nov. and emended description of Enterobacter asburiae and Enterobacter kobei. Syst Appl Microbiol 28: 196–205 [CrossRef] [PubMed].
    [Google Scholar]
  13. Jones D.T., Taylor W.R., Thornton J.M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282,[PubMed].
    [Google Scholar]
  14. Kämpfer P.. ( 1990;). Evaluation of the Titertek-Enterobac-Automated system (TTE355 AS) for identification of Enterobacteriaceae. Zentralbl Bakteriol 273: 164–172 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R.M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  16. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kämpfer P., Ruppel S., Remus R.. ( 2005;). Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28: 213–221 [CrossRef] [PubMed].
    [Google Scholar]
  18. Khunthongpan S., Bourneow C., H-Kittikun A., Tanasupawat S., Benjakul S., Sumpavapol P.. ( 2013;). Enterobacter siamensis sp. nov., a transglutaminase-producing bacterium isolated from seafood processing wastewater in Thailand. J Gen Appl Microbiol 59: 135–140 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lagier J.-C., El Karkouri K., Mishra A.K., Robert C., Raoult D., Fournier P.-E.. ( 2013;). Non contiguous-finished genome sequence and description of Enterobacter massiliensis sp. nov. Stand Genomic Sci 7: 399–412 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nie L., Shah S., Rashid A., Burd G.I., Dixon D.G., Glick B.R.. ( 2002;). Phytoremedation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40: 355–361 [CrossRef].
    [Google Scholar]
  24. Nishijima K.A., Wall M.M., Siderhurst M.S.. ( 2007;). Demonstrating pathogenicity of Enterobacter cloacae on macadamia and identifying associated volatiles of gray kernel of macadamia in Hawaii. Plant Dis 91: 1221–1228 [CrossRef].
    [Google Scholar]
  25. Oren A., Garrity G.M.. ( 2013;). (Validation List 154) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 63: 3931–3934 [CrossRef].
    [Google Scholar]
  26. Oren A., Garrity G.M.. ( 2014a;). (List of Changes in Taxonomic Opinion 19) Notification of changes in taxonomic opinion previously published outside the IJSEM. Int J Syst Evol Microbiol 64: 8–10 [CrossRef].
    [Google Scholar]
  27. Oren A., Garrity G.M.. ( 2014b;). (Validation List 155) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 64: 1–5 [CrossRef].
    [Google Scholar]
  28. Pruesse E., Peplies J., Glöckner F.O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  29. Schwarz G.. ( 1978;). Estimating the dimension of a model. Ann Stat 6: 461–464 [CrossRef].
    [Google Scholar]
  30. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  31. Stephan R., Van Trappen S., Cleenwerck I., Vancanneyt M., De Vos P., Lehner A.. ( 2007;). Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. Int J Syst Evol Microbiol 57: 820–826 [CrossRef] [PubMed].
    [Google Scholar]
  32. Stephan R., Grim C.J., Gopinath G.R., Mammel M.K., Sathyamoorthy V., Trach L.H., Chase H.R., Fanning S., Tall B.D.. ( 2014;). Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Microbiol 64: 3402–3410 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  34. Yarza P., Richter M., Peplies J., Euzéby J., Amann R., Schleifer K.H., Ludwig W., Glöckner F.O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zhu B., Lou M.-M., Xie G.-L., Wang G.-F., Zhou Q., Wang F., Fang Y., Su T., Li B., Duan Y.-P.. ( 2011;). Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. Int J Syst Evol Microbiol 61: 2769–2774 [CrossRef] [PubMed].
    [Google Scholar]
  36. Ziemke F., Höfle M.G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000547
Loading
/content/journal/ijsem/10.1099/ijsem.0.000547
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error