1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-flagellated marine bacterium, designated strain LS-861, was isolated from seawater of the South China Sea (Taiwan). Strain LS-861 grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity (91.5 % each) with ‘’ CGMCC 1.12519 and JG120-1 and lower sequence similarity ( < 91.5 %) with other species. Phylogenetic analyses based on 16S rRNA gene sequences revealed a distinct taxonomic position attained by strain LS-861 within the clade that accommodated members of the family . The major fatty acids were C, iso-Cω10, C 3-OH and Cω7/Cω6. The polar lipid profile was relatively simple as compared with other representatives of , by having major amounts of diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid, and moderate amounts of three unidentified phospholipids and an unidentified aminolipid. The DNA G+C content was 61.2 mol%. The predominant quinone system was ubiquinone-10 (Q-10). The data in general and phylogenetic and polar lipid data in particular clearly distinguish the novel strain from related species at the genus level. Thus, strain LS-861 is suggested to represent a novel species of a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is LS-861 ( = BCRC 80818 = JCM 30682).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000544
2015-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4100.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000544&mimeType=html&fmt=ahah

References

  1. Arnosti C., Ziervogel K., Yang T., Teske A. ( 2015;). Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep Sea Res Part II Top Stud Oceanogr [View Article] (in press)
    [Google Scholar]
  2. Bambauer A., Rainey F.A., Stackebrandt E., Winter J. ( 1998;). Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 169 293302 [View Article] [PubMed].
    [Google Scholar]
  3. Bernardet J.F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52 10491070 [View Article] [PubMed].
    [Google Scholar]
  4. Collins M.D. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267287. Edited by Goodfellow M., Minnikin D. E. London: Academic Press;.
    [Google Scholar]
  5. Doronina N.V., Kaparullina E.N., Trotsenko Y.A., Nörtemann B., Bucheli-Witschel M., Weilenmann H.U., Egli T. ( 2010;). Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. Int J Syst Evol Microbiol 60 10441051 [View Article] [PubMed].
    [Google Scholar]
  6. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E.C. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17 78437853 [View Article] [PubMed].
    [Google Scholar]
  7. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [View Article] [PubMed].
    [Google Scholar]
  8. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  9. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [View Article].
    [Google Scholar]
  10. Fritsche K., Auling G., Andreesen J.R., Lechner U. ( 1999;). Defluvibacter lusatiae gen. nov., sp. nov., a new chlorohenol-degrading member of the α-2 subgroup of Proteobacteria. Syst Appl Microbiol 22 197204 [View Article] [PubMed].
    [Google Scholar]
  11. Hameed A., Shahina M., Lai W.-A., Lin S.-Y., Young L.-S., Liu Y.-C., Hsu Y.-H., Young C.-C. ( 2015;). Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum . Antonie van Leeuwenhoek 107 759771 [View Article] [PubMed].
    [Google Scholar]
  12. Jarvis B.D.W., VanBerkum P., Chen W.X., Nour S.M., Fernandez M.P., Cleyet-Marel J.C., Gillis M. ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47 895898. [CrossRef]
    [Google Scholar]
  13. Jung Y.T., Park S., Lee J.S., Oh T.K., Yoon J.H. ( 2012;). Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62 20562061 [View Article] [PubMed].
    [Google Scholar]
  14. Kämpfer P., Müller C., Mau M., Neef A., Auling G., Busse H.J., Osborn A.M., Stolz A. ( 1999;). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49 887897 [View Article] [PubMed].
    [Google Scholar]
  15. Kämpfer P., Martin E., Lodders N., Jäckel U. ( 2009;). Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov. Int J Syst Evol Microbiol 59 24682470 [View Article] [PubMed].
    [Google Scholar]
  16. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  17. Knösel D.H. ( 1984;). Genus IV. Phyllobacterium (ex Knösel 1962) nom. rev. (Phyllobacterium Knösel 1962, 96). . In Bergey's Manual of Systematic Bacteriology, pp. 254256. Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;.
    [Google Scholar]
  18. Labbé N., Parent S., Villemur R. ( 2004;). Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54 269273 [View Article] [PubMed].
    [Google Scholar]
  19. Mergaert J., Cnockaert M.C., Swings J. ( 2002;). Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 52 18211823 [View Article] [PubMed].
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39 159167 [View Article].
    [Google Scholar]
  21. Miller L.T. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16 584586 [PubMed].
    [Google Scholar]
  22. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [View Article].
    [Google Scholar]
  23. Murray R.G.E., Doetsch R.N., Robinow C.F. ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 3234. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  24. Paisley R. ( 1996). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual., Newark, DE: MIDI;.
    [Google Scholar]
  25. Peix A., Rivas R., Trujillo M.E., Vancanneyt M., Velázquez E., Willems A. ( 2005;). Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55 11631166 [View Article] [PubMed].
    [Google Scholar]
  26. Roh S.W., Kim K.H., Nam Y.D., Chang H.W., Kim M.S., Shin K.S., Yoon J.H., Oh H.M., Bae J.W. ( 2008;). Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment. J Microbiol 46 594598 [View Article] [PubMed].
    [Google Scholar]
  27. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  28. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Scherer P., Kneifel H. ( 1983;). Distribution of polyamines in methanogenic bacteria. J Bacteriol 154 13151322 [PubMed].
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [View Article] [PubMed].
    [Google Scholar]
  31. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  32. Urakami T., Araki H., Oyanagi H., Suzuki K.I., Komagata K. ( 1992;). Transfer of Pseudomonas aminovorans (Dendooren Dejong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov., and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42 8492 [View Article].
    [Google Scholar]
  33. Yabe S., Aiba Y., Sakai Y., Hazaka M., Yokota A. ( 2012;). Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. Int J Syst Evol Microbiol 62 29912996 [View Article] [PubMed].
    [Google Scholar]
  34. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F.O., Rosselló-Móra R. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31 241250 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000544
Loading
/content/journal/ijsem/10.1099/ijsem.0.000544
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error