1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-flagellated marine bacterium, designated strain LS-861, was isolated from seawater of the South China Sea (Taiwan). Strain LS-861 grew optimally at pH 7.0 and 30 °C in the presence of 3 % (w/v) NaCl. The novel strain shared highest 16S rRNA gene sequence similarity (91.5 % each) with ‘’ CGMCC 1.12519 and JG120-1 and lower sequence similarity ( < 91.5 %) with other species. Phylogenetic analyses based on 16S rRNA gene sequences revealed a distinct taxonomic position attained by strain LS-861 within the clade that accommodated members of the family . The major fatty acids were C, iso-Cω10, C 3-OH and Cω7/Cω6. The polar lipid profile was relatively simple as compared with other representatives of , by having major amounts of diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid, and moderate amounts of three unidentified phospholipids and an unidentified aminolipid. The DNA G+C content was 61.2 mol%. The predominant quinone system was ubiquinone-10 (Q-10). The data in general and phylogenetic and polar lipid data in particular clearly distinguish the novel strain from related species at the genus level. Thus, strain LS-861 is suggested to represent a novel species of a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is LS-861 ( = BCRC 80818 = JCM 30682).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000544
2015-11-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4100.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000544&mimeType=html&fmt=ahah

References

  1. Arnosti C. , Ziervogel K. , Yang T. , Teske A. . ( 2015;). Oil-derived marine aggregates – hot spots of polysaccharide degradation by specialized bacterial communities. Deep Sea Res Part II Top Stud Oceanogr [CrossRef] (in press)
    [Google Scholar]
  2. Bambauer A. , Rainey F.A. , Stackebrandt E. , Winter J. . ( 1998;). Characterization of Aquamicrobium defluvii gen. nov. sp. nov., a thiophene-2-carboxylate-metabolizing bacterium from activated sludge. Arch Microbiol 169: 293–302 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bernardet J.F. , Nakagawa Y. , Holmes B. , Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes . ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  4. Collins M.D. . ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London: Academic Press;.
    [Google Scholar]
  5. Doronina N.V. , Kaparullina E.N. , Trotsenko Y.A. , Nörtemann B. , Bucheli-Witschel M. , Weilenmann H.U. , Egli T. . ( 2010;). Chelativorans multitrophicus gen. nov., sp. nov. and Chelativorans oligotrophicus sp. nov., aerobic EDTA-degrading bacteria. Int J Syst Evol Microbiol 60: 1044–1051 [CrossRef] [PubMed].
    [Google Scholar]
  6. Edwards U. , Rogall T. , Blöcker H. , Emde M. , Böttger E.C. . ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  10. Fritsche K. , Auling G. , Andreesen J.R. , Lechner U. . ( 1999;). Defluvibacter lusatiae gen. nov., sp. nov., a new chlorohenol-degrading member of the α-2 subgroup of Proteobacteria. Syst Appl Microbiol 22: 197–204 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hameed A. , Shahina M. , Lai W.-A. , Lin S.-Y. , Young L.-S. , Liu Y.-C. , Hsu Y.-H. , Young C.-C. . ( 2015;). Oricola cellulosilytica gen. nov., sp. nov., a cellulose-degrading bacterium of the family Phyllobacteriaceae isolated from surface seashore water, and emended descriptions of Mesorhizobium loti and Phyllobacterium myrsinacearum . Antonie van Leeuwenhoek 107: 759–771 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jarvis B.D.W. , VanBerkum P. , Chen W.X. , Nour S.M. , Fernandez M.P. , Cleyet-Marel J.C. , Gillis M. . ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47: 895–898.[CrossRef]
    [Google Scholar]
  13. Jung Y.T. , Park S. , Lee J.S. , Oh T.K. , Yoon J.H. . ( 2012;). Pseudahrensia aquimaris gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 62: 2056–2061 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kämpfer P. , Müller C. , Mau M. , Neef A. , Auling G. , Busse H.J. , Osborn A.M. , Stolz A. . ( 1999;). Description of Pseudaminobacter gen. nov. with two new species, Pseudaminobacter salicylatoxidans sp. nov. and Pseudaminobacter defluvii sp. nov. Int J Syst Bacteriol 49: 887–897 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kämpfer P. , Martin E. , Lodders N. , Jäckel U. . ( 2009;). Transfer of Defluvibacter lusatiensis to the genus Aquamicrobium as Aquamicrobium lusatiense comb. nov. and description of Aquamicrobium aerolatum sp. nov. Int J Syst Evol Microbiol 59: 2468–2470 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  17. Knösel D.H. . ( 1984;). Genus IV. Phyllobacterium (ex Knösel 1962) nom. rev. (Phyllobacterium Knösel 1962, 96). . In Bergey's Manual of Systematic Bacteriology, pp. 254–256. Edited by Krieg N. R. , Holt J. G. . Baltimore: Williams & Wilkins;.
    [Google Scholar]
  18. Labbé N. , Parent S. , Villemur R. . ( 2004;). Nitratireductor aquibiodomus gen. nov., sp. nov., a novel α-proteobacterium from the marine denitrification system of the Montreal Biodome (Canada). Int J Syst Evol Microbiol 54: 269–273 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mergaert J. , Cnockaert M.C. , Swings J. . ( 2002;). Phyllobacterium myrsinacearum (subjective synonym Phyllobacterium rubiacearum) emend. Int J Syst Evol Microbiol 52: 1821–1823 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Miller L.T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  22. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  23. Murray R.G.E. , Doetsch R.N. , Robinow C.F. . ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 32–34. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  24. Paisley R. . ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual., Newark, DE: MIDI;.
    [Google Scholar]
  25. Peix A. , Rivas R. , Trujillo M.E. , Vancanneyt M. , Velázquez E. , Willems A. . ( 2005;). Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Int J Syst Evol Microbiol 55: 1163–1166 [CrossRef] [PubMed].
    [Google Scholar]
  26. Roh S.W. , Kim K.H. , Nam Y.D. , Chang H.W. , Kim M.S. , Shin K.S. , Yoon J.H. , Oh H.M. , Bae J.W. . ( 2008;). Aliihoeflea aestuarii gen. nov., sp. nov., a novel bacterium isolated from tidal flat sediment. J Microbiol 46: 594–598 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Scherer P. , Kneifel H. . ( 1983;). Distribution of polyamines in methanogenic bacteria. J Bacteriol 154: 1315–1322 [PubMed].
    [Google Scholar]
  30. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  31. Thompson J.D. , Gibson T.J. , Plewniak F. , Jeanmougin F. , Higgins D.G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  32. Urakami T. , Araki H. , Oyanagi H. , Suzuki K.I. , Komagata K. . ( 1992;). Transfer of Pseudomonas aminovorans (Dendooren Dejong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov., and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42: 84–92 [CrossRef].
    [Google Scholar]
  33. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Yokota A. . ( 2012;). Thermovum composti gen. nov., sp. nov., an alphaproteobacterium from compost. Int J Syst Evol Microbiol 62: 2991–2996 [CrossRef] [PubMed].
    [Google Scholar]
  34. Yarza P. , Richter M. , Peplies J. , Euzeby J. , Amann R. , Schleifer K.-H. , Ludwig W. , Glöckner F.O. , Rosselló-Móra R. . ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000544
Loading
/content/journal/ijsem/10.1099/ijsem.0.000544
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error