1887

Abstract

A Gram-stain-positive, aerobic, non-motile, curved (selenoid), rod-shaped actinobacterium, designated KNC, was isolated from the 0.2 μm-filtrate of river water in western Japan. Cells of strain KNC were ultramicrosized (0.04–0.05 μm). The strain grew at 15–37 °C, with no observable growth at 10 °C or 40 °C. The pH range for growth was 7–9, with weaker growth at pH 10. Growth was impeded by the presence of NaCl at concentrations greater than 1 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KNC showed relatively high sequence similarity (97.2 %) to Cr8-25 in the family . However, strain KNC formed an independent cluster with cultured, but as-yet-unidentified, species and environmental clones on the phylogenetic tree. The major cellular fatty acids were anteiso-C (41.0 %), iso-C (21.8 %), C (18.0 %) and anteiso-C (12.9 %), and the major menaquinones were MK-11 (71.3 %) and MK-12 (13.6 %). The major polar lipids were phosphatidylglycerol and two unknown glycolipids. The cell-wall muramic acid acyl type was acetyl. The peptidoglycan was B-type, and contained 3-hydroxyglutamic acid, glutamic acid, aspartic acid, glycine, alanine and lysine, with the latter being the diagnostic diamino acid. The G+C content of the genome was unusually low for actinobacteria (52.1 mol%), compared with other genera in the family . Based on the phenotypic characteristics and phylogenetic evidence, strain KNC represents a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is KNC ( = NBRC 105389 = NCIMB 14875).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000541
2015-11-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4072.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000541&mimeType=html&fmt=ahah

References

  1. Aljanabi S.M., Martinez I.. ( 1997;). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25: 4692–4693 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Andersson A., Larsson U., Hagström Å.. ( 1986;). Size-selective grazing by a microflagellate on pelagic bacteria. Mar Ecol Prog Ser 33: 51–57 [CrossRef].
    [Google Scholar]
  4. Barrow G.I., Feltham R.K.A., (editors). ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn.., Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  5. Bligh E.G., Dyer W.J.. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cook D.M., Henriksen E.D., Rogers T.E., Peterson J.D.. ( 2008;). Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae. Int J Syst Evol Microbiol 58: 2779–2782 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dastager S.G., Lee J.C., Ju Y.J., Park D.J., Kim C.J.. ( 2008;). Cryobacterium mesophilum sp. nov., a novel mesophilic bacterium. Int J Syst Evol Microbiol 58: 1241–1244 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dastager S.G., Lee J.C., Ju Y.J., Park D.J., Kim C.J.. ( 2009;). Leifsonia kribbensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59: 18–21 [CrossRef] [PubMed].
    [Google Scholar]
  9. Duda V.I., Suzina N.E., Polivtseva V.N., Boronin A.M.. ( 2012;). [Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology]. Mikrobiologiia 81: 415–427 (in Russian).
    [Google Scholar]
  10. Evtushenko L.I., Takeuchi M.. ( 2006;). The family Microbacteriaceae. . In The Prokaryotes; a Handbook on the Biology of Bacteria, pp. 1020–1098. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E..3, 3rd edn.., New York: Springer;.
    [Google Scholar]
  11. Hahn M.W., Pöckl M.. ( 2005;). Ecotypes of planktonic actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71: 766–773 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hahn M.W., Lünsdorf H., Wu Q., Schauer M., Höfle M.G., Boenigk J., Stadler P.. ( 2003;). Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69: 1442–1451 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hahn M.W., Stadler P., Wu Q.L., Pöckl M.. ( 2004;). The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57: 379–390 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hahn M.W., Schmidt J., Taipale S.J., Doolittle W.F., Koll U.. ( 2014;). Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol 64: 3254–3263 [CrossRef] [PubMed].
    [Google Scholar]
  15. Jang Y.H., Kim S.J., Hamada M., Tamura T., Ahn J.H., Weon H.Y., Suzuki K., Kwon S.W.. ( 2012;). Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 50: 1047–1052 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jang G.I., Cho Y., Cho B.C.. ( 2013a;). Pontimonas salivibrio gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a seawater reservoir of a solar saltern. Int J Syst Evol Microbiol 63: 2124–2131 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jang Y.-H., Kim S.-J., Tamura T., Hamada M., Weon H.-Y., Suzuki K., Kwon S.-W., Kim W.-G.. ( 2013b;). Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov. Int J Syst Evol Microbiol 63: 1403–1410 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jin L., Lee H.-G., Kim H.-S., Ahn C.-Y., Oh H.M.. ( 2013;). Amnibacterium soli sp. nov., an actinobacterium isolated from grass soil. Int J Syst Evol Microbiol 63: 4750–4753 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kang I., Lee K., Yang S.-J., Choi A., Kang D., Lee Y.K., Cho J.C.. ( 2012;). Genome sequence of “Candidatus Aquiluna” sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord. J Bacteriol 194: 3550–3551 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim S.-J., Lee S.-S.. ( 2011;). Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae. Int J Syst Evol Microbiol 61: 155–159 [CrossRef] [PubMed].
    [Google Scholar]
  21. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  22. Lee S.D.. ( 2007;). Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. Int J Syst Evol Microbiol 57: 2498–2502 [CrossRef] [PubMed].
    [Google Scholar]
  23. Li A.-H., Liu H.-C., Xin Y.-H., Kim S.-G., Zhou Y.-G.. ( 2014;). Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 64: 579–587 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  25. Minnikin D.E., Collins M.D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  26. Nakai R., Shibuya E., Justel A., Rico E., Quesada A., Kobayashi F., Iwasaka Y., Shi G.-Y., Amano Y., other authors. ( 2013;). Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. Antarct Sci 25: 219–228 [CrossRef].
    [Google Scholar]
  27. Nakai R., Nishijima M., Tazato N., Handa Y., Karray F., Sayadi S., Isoda H., Naganuma T.. ( 2014;). Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 64: 3353–3359 [CrossRef] [PubMed].
    [Google Scholar]
  28. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28: 113–122 [CrossRef].
    [Google Scholar]
  29. Park Y.-H., Suzuki K., Yim D.-G., Lee K.-C., Kim E., Yoon J., Kim S., Kho Y.H., Goodfellow M., Komagata K.. ( 1993;). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64: 307–313 [CrossRef] [PubMed].
    [Google Scholar]
  30. Reasoner D.J., Geldreich E.E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  31. Schleifer K.H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  32. Schumann P., Zhang D.C., Redzic M., Margesin R.. ( 2012;). Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62: 2724–2730 [CrossRef] [PubMed].
    [Google Scholar]
  33. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K.. ( 1997;). Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. Int J Syst Bacteriol 47: 474–478 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  37. Tindall B.J., Sikorski J., Smibert R.M., Kreig N.R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.., 3rd edn.., Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  38. Uchida K., Kudo T., Suzuki K.I., Nakase T.. ( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45: 49–56 [CrossRef] [PubMed].
    [Google Scholar]
  39. Warnecke F., Amann R., Pernthaler J.. ( 2004;). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6: 242–253 [CrossRef] [PubMed].
    [Google Scholar]
  40. Watanabe K., Komatsu N., Ishii Y., Negishi M.. ( 2009;). Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67: 57–68 [CrossRef] [PubMed].
    [Google Scholar]
  41. Watanabe K., Komatsu N., Kitamura T., Ishii Y., Park H.-D., Miyata R., Noda N., Sekiguchi Y., Satou T., other authors. ( 2012;). Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 14: 2511–2525 [CrossRef] [PubMed].
    [Google Scholar]
  42. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  43. Weon H.Y., Kim S.J., Jang Y.H., Hamada M., Tamura T., Ahn J.H., Suzuki K., Kwon S.W.. ( 2013;). Naasia aerilata gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from air. Int J Syst Evol Microbiol 63: 2436–2441 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000541
Loading
/content/journal/ijsem/10.1099/ijsem.0.000541
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error