1887

Abstract

A Gram-stain-positive, aerobic, non-motile, curved (selenoid), rod-shaped actinobacterium, designated KNC, was isolated from the 0.2 μm-filtrate of river water in western Japan. Cells of strain KNC were ultramicrosized (0.04–0.05 μm). The strain grew at 15–37 °C, with no observable growth at 10 °C or 40 °C. The pH range for growth was 7–9, with weaker growth at pH 10. Growth was impeded by the presence of NaCl at concentrations greater than 1 %. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KNC showed relatively high sequence similarity (97.2 %) to Cr8-25 in the family . However, strain KNC formed an independent cluster with cultured, but as-yet-unidentified, species and environmental clones on the phylogenetic tree. The major cellular fatty acids were anteiso-C (41.0 %), iso-C (21.8 %), C (18.0 %) and anteiso-C (12.9 %), and the major menaquinones were MK-11 (71.3 %) and MK-12 (13.6 %). The major polar lipids were phosphatidylglycerol and two unknown glycolipids. The cell-wall muramic acid acyl type was acetyl. The peptidoglycan was B-type, and contained 3-hydroxyglutamic acid, glutamic acid, aspartic acid, glycine, alanine and lysine, with the latter being the diagnostic diamino acid. The G+C content of the genome was unusually low for actinobacteria (52.1 mol%), compared with other genera in the family . Based on the phenotypic characteristics and phylogenetic evidence, strain KNC represents a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is KNC ( = NBRC 105389 = NCIMB 14875).

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science (Award 23570117)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000541
2015-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4072.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000541&mimeType=html&fmt=ahah

References

  1. Aljanabi S.M., Martinez I. ( 1997;). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25 46924693 [View Article] [PubMed].
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. ( 1990;). Basic local alignment search tool. J Mol Biol 215 403410 [View Article] [PubMed].
    [Google Scholar]
  3. Andersson A., Larsson U., Hagström Å. ( 1986;). Size-selective grazing by a microflagellate on pelagic bacteria. Mar Ecol Prog Ser 33 5157 [View Article].
    [Google Scholar]
  4. Barrow G.I., Feltham R.K.A., (editors). ( 1993). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.., Cambridge: Cambridge University Press; [View Article].
    [Google Scholar]
  5. Bligh E.G., Dyer W.J. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37 911917 [View Article] [PubMed].
    [Google Scholar]
  6. Cook D.M., Henriksen E.D., Rogers T.E., Peterson J.D. ( 2008;). Klugiella xanthotipulae gen. nov., sp. nov., a novel member of the family Microbacteriaceae . Int J Syst Evol Microbiol 58 27792782 [View Article] [PubMed].
    [Google Scholar]
  7. Dastager S.G., Lee J.C., Ju Y.J., Park D.J., Kim C.J. ( 2008;). Cryobacterium mesophilum sp. nov., a novel mesophilic bacterium. Int J Syst Evol Microbiol 58 12411244 [View Article] [PubMed].
    [Google Scholar]
  8. Dastager S.G., Lee J.C., Ju Y.J., Park D.J., Kim C.J. ( 2009;). Leifsonia kribbensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59 1821 [View Article] [PubMed].
    [Google Scholar]
  9. Duda V.I., Suzina N.E., Polivtseva V.N., Boronin A.M. ( 2012;). [Ultramicrobacteria: formation of the concept and contribution of ultramicrobacteria to biology]. Mikrobiologiia 81 415427 (in Russian) .
    [Google Scholar]
  10. Evtushenko L.I., Takeuchi M. ( 2006;). The family Microbacteriaceae . . In The Prokaryotes; a Handbook on the Biology of Bacteria, pp. 10201098. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. 3 , 3rd edn.., New York: Springer;.
    [Google Scholar]
  11. Hahn M.W., Pöckl M. ( 2005;). Ecotypes of planktonic actinobacteria with identical 16S rRNA genes adapted to thermal niches in temperate, subtropical, and tropical freshwater habitats. Appl Environ Microbiol 71 766773 [View Article] [PubMed].
    [Google Scholar]
  12. Hahn M.W., Lünsdorf H., Wu Q., Schauer M., Höfle M.G., Boenigk J., Stadler P. ( 2003;). Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69 14421451 [View Article] [PubMed].
    [Google Scholar]
  13. Hahn M.W., Stadler P., Wu Q.L., Pöckl M. ( 2004;). The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57 379390 [View Article] [PubMed].
    [Google Scholar]
  14. Hahn M.W., Schmidt J., Taipale S.J., Doolittle W.F., Koll U. ( 2014;). Rhodoluna lacicola gen. nov., sp. nov., a planktonic freshwater bacterium with stream-lined genome. Int J Syst Evol Microbiol 64 32543263 [View Article] [PubMed].
    [Google Scholar]
  15. Jang Y.H., Kim S.J., Hamada M., Tamura T., Ahn J.H., Weon H.Y., Suzuki K., Kwon S.W. ( 2012;). Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. J Microbiol 50 10471052 [View Article] [PubMed].
    [Google Scholar]
  16. Jang G.I., Cho Y., Cho B.C. ( 2013a;). Pontimonas salivibrio gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a seawater reservoir of a solar saltern. Int J Syst Evol Microbiol 63 21242131 [View Article] [PubMed].
    [Google Scholar]
  17. Jang Y.-H., Kim S.-J., Tamura T., Hamada M., Weon H.-Y., Suzuki K., Kwon S.-W., Kim W.-G. ( 2013b;). Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov. Int J Syst Evol Microbiol 63 14031410 [View Article] [PubMed].
    [Google Scholar]
  18. Jin L., Lee H.-G., Kim H.-S., Ahn C.-Y., Oh H.M. ( 2013;). Amnibacterium soli sp. nov., an actinobacterium isolated from grass soil. Int J Syst Evol Microbiol 63 47504753 [View Article] [PubMed].
    [Google Scholar]
  19. Kang I., Lee K., Yang S.-J., Choi A., Kang D., Lee Y.K., Cho J.C. ( 2012;). Genome sequence of “Candidatus Aquiluna” sp. strain IMCC13023, a marine member of the Actinobacteria isolated from an arctic fjord. J Bacteriol 194 35503551 [View Article] [PubMed].
    [Google Scholar]
  20. Kim S.-J., Lee S.-S. ( 2011;). Amnibacterium kyonggiense gen. nov., sp. nov., a new member of the family Microbacteriaceae . Int J Syst Evol Microbiol 61 155159 [View Article] [PubMed].
    [Google Scholar]
  21. Komagata K., Suzuki K. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19 161207 [View Article].
    [Google Scholar]
  22. Lee S.D. ( 2007;). Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae . Int J Syst Evol Microbiol 57 24982502 [View Article] [PubMed].
    [Google Scholar]
  23. Li A.-H., Liu H.-C., Xin Y.-H., Kim S.-G., Zhou Y.-G. ( 2014;). Glaciihabitans tibetensis gen. nov., sp. nov., a psychrotolerant bacterium of the family Microbacteriaceae, isolated from glacier ice water. Int J Syst Evol Microbiol 64 579587 [View Article] [PubMed].
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39 159167 [View Article].
    [Google Scholar]
  25. Minnikin D.E., Collins M.D., Goodfellow M. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas Oerskovia and related taxa. J Appl Bacteriol 47 8795 [View Article].
    [Google Scholar]
  26. Nakai R., Shibuya E., Justel A., Rico E., Quesada A., Kobayashi F., Iwasaka Y., Shi G.-Y., Amano Y., other authors. ( 2013;). Phylogeographic analysis of filterable bacteria with special reference to Rhizobiales strains that occur in cryospheric habitats. Antarct Sci 25 219228 [View Article].
    [Google Scholar]
  27. Nakai R., Nishijima M., Tazato N., Handa Y., Karray F., Sayadi S., Isoda H., Naganuma T. ( 2014;). Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 64 33533359 [View Article] [PubMed].
    [Google Scholar]
  28. Nishijima M., Araki-Sakai M., Sano H. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28 113122 [View Article].
    [Google Scholar]
  29. Park Y.-H., Suzuki K., Yim D.-G., Lee K.-C., Kim E., Yoon J., Kim S., Kho Y.H., Goodfellow M., Komagata K. ( 1993;). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 64 307313 [View Article] [PubMed].
    [Google Scholar]
  30. Reasoner D.J., Geldreich E.E. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49 17 [PubMed].
    [Google Scholar]
  31. Schleifer K.H., Kandler O. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407477 [PubMed].
    [Google Scholar]
  32. Schumann P., Zhang D.C., Redzic M., Margesin R. ( 2012;). Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol 62 27242730 [View Article] [PubMed].
    [Google Scholar]
  33. Suzuki K., Sasaki J., Uramoto M., Nakase T., Komagata K. ( 1997;). Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. Int J Syst Bacteriol 47 474478 [View Article] [PubMed].
    [Google Scholar]
  34. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [View Article].
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [View Article] [PubMed].
    [Google Scholar]
  36. Thompson J.D., Higgins D.G., Gibson T.J. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 46734680 [View Article] [PubMed].
    [Google Scholar]
  37. Tindall B.J., Sikorski J., Smibert R.M., Kreig N.R. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R. , 3rd edn.., Washington, DC: American Society for Microbiology; [View Article].
    [Google Scholar]
  38. Uchida K., Kudo T., Suzuki K.I., Nakase T. ( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45 4956 [View Article] [PubMed].
    [Google Scholar]
  39. Warnecke F., Amann R., Pernthaler J. ( 2004;). Actinobacterial 16S rRNA genes from freshwater habitats cluster in four distinct lineages. Environ Microbiol 6 242253 [View Article] [PubMed].
    [Google Scholar]
  40. Watanabe K., Komatsu N., Ishii Y., Negishi M. ( 2009;). Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67 5768 [View Article] [PubMed].
    [Google Scholar]
  41. Watanabe K., Komatsu N., Kitamura T., Ishii Y., Park H.-D., Miyata R., Noda N., Sekiguchi Y., Satou T., other authors. ( 2012;). Ecological niche separation in the Polynucleobacter subclusters linked to quality of dissolved organic matter: a demonstration using a high sensitivity cultivation-based approach. Environ Microbiol 14 25112525 [View Article] [PubMed].
    [Google Scholar]
  42. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173 697703 [PubMed].
    [Google Scholar]
  43. Weon H.Y., Kim S.J., Jang Y.H., Hamada M., Tamura T., Ahn J.H., Suzuki K., Kwon S.W. ( 2013;). Naasia aerilata gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from air. Int J Syst Evol Microbiol 63 24362441 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000541
Loading
/content/journal/ijsem/10.1099/ijsem.0.000541
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error