1887

Abstract

A non-motile, cocobacilli-shaped and pink-pigmented bacterium, designated strain WW53, was isolated from wetland freshwater (Woopo wetland, Republic of Korea). Cells were Gram-stain-negative, catalase- and oxidase-positive. The major fatty acids were Cω7/Cω6 and C.The predominant quinone and polyamine were ubiquinone 10 (Q-10) and spermidine, respectively. The DNA G+C content was 71 mol%. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine and an unknown aminolipid. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WW53 belongs to the family , and is related to the genus . Strain WW53 was most closely related to HS-69 (95.3 % 16S rRNA gene sequence similarity). Results of a polyphasic taxonomy study suggested that the isolate represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is WW53 ( = KCTC 32534 = JCM 19527).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000536
2015-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4049.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000536&mimeType=html&fmt=ahah

References

  1. Akaike H. . ( 1974;). A new look at the statistical model identification. IEEE Trans Automat Contr 19: 716–723 [CrossRef].
    [Google Scholar]
  2. Baik K. S. , Park S. C. , Choe H. N. , Kim S. N. , Moon J. H. , Seong C. N. . ( 2012;). Roseomonas riguiloci sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 62: 3024–3029 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chen Q. , Sun L. N. , Zhang X. X. , He J. , Kwon S. W. , Zhang J. , Li S. P. , Gu J. G. . ( 2014;). Roseomonas rhizosphaerae sp. nov., a triazophos-degrading bacterium isolated from soil. Int J Syst Evol Microbiol 64: 1127–1133 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chun J. , Goodfellow M. . ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45: 240–245 [CrossRef] [PubMed].
    [Google Scholar]
  5. CLSI ( 2009;). Performance Standards for Antimicrobial Susceptibility Testing 19th Informational Supplement, M100–S19. Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  6. Collins M. D. . ( 1994;). Isoprenoid quinones. . In Chemical Methods in Prokaryotic Systematics, pp. 265–309. Edited by Goodfellow M. , O'Donnell A. G. . Chichester: Wiley;.
    [Google Scholar]
  7. Dong L. , Ming H. , Yin Y. R. , Duan Y. Y. , Zhou E. M. , Nie G. X. , Feng H. G. , Liu L. , Li W. J. . ( 2014;). Roseomonas alkaliterrae sp. nov., isolated from an alkali geothermal soil sample in Tengchong, Yunnan, South-West China. Antonie van Leeuwenhoek 105: 899–905 [CrossRef] [PubMed].
    [Google Scholar]
  8. Embley T. M. , Wait R. . ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M. , O'Donell A. G. . Chichester: Wiley;.
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. . ( 1993;). phylip (phylogeny inference package), version 3.5c Seattle, USA: Department of Genome Sciences, University of Washington;.
    [Google Scholar]
  11. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Furuhata K. , Miyamoto H. , Goto K. , Kato Y. , Hara M. , Fukuyama M. . ( 2008;). Roseomonas stagni sp. nov., isolated from pond water in Japan. J Gen Appl Microbiol 54: 167–171 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gallego V. , Sánchez-Porro C. , García M. T. , Ventosa A. . ( 2006;). Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56: 2291–2295 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gordon R. E. , Barnett D. A. , Handerhan J. E. , Pang C. H. N. . ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24: 54–63 [CrossRef].
    [Google Scholar]
  15. Hall T. A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  16. Han X. Y. , Pham A. S. , Tarrand J. J. , Rolston K. V. , Helsel L. O. , Levett P. N. . ( 2003;). Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 120: 256–264 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jiang C. Y. , Dai X. , Wang B. J. , Zhou Y. G. , Liu S. J. . ( 2006;). Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56: 25–28 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jukes T. H. , Cantor C. R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N. . vol. 3 New York: Academic Press; [CrossRef].
    [Google Scholar]
  19. Kim D. U. , Ka J. O. . ( 2014;). Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64: 1024–1029 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim M. S. , Baik K. S. , Park S. C. , Rhee M. S. , Oh H. M. , Seong C. N. . ( 2009;). Roseomonas frigidaquae sp. nov., isolated from a water-cooling system. Int J Syst Evol Microbiol 59: 1630–1634 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kim S. J. , Weon H. Y. , Ahn J. H. , Hong S. B. , Seok S. J. , Whang K. S. , Kwon S. W. . ( 2013;). Roseomonas aerophila sp. nov., isolated from air. Int J Syst Evol Microbiol 63: 2334–2337 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kovacs N. . ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  25. Lopes A. , Espirito Santo C. , Grass G. , Chung A. P. , Morais P. V. . ( 2011;). Roseomonas pecuniae sp. nov., isolated from the surface of a copper-alloy coin. Int J Syst Evol Microbiol 61: 610–615 [CrossRef] [PubMed].
    [Google Scholar]
  26. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  27. Minnikin D. E. , Patel P. V. , Alshamaony L. , Goodfellow M. . ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  28. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  29. Posada D. , Crandall K. A. . ( 2001;). Selecting the best-fit model of nucleotide substitution. Syst Biol 50: 580–601 [CrossRef] [PubMed].
    [Google Scholar]
  30. Powers E. M. . ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758.
    [Google Scholar]
  31. Rihs J. D. , Brenner D. J. , Weaver R. E. , Steigerwalt A. G. , Hollis D. G. , Yu V. L. . ( 1993;). Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31: 3275–3283,[PubMed].
    [Google Scholar]
  32. Rihs J. D. , Brenner D. J. , Weaver R. E. , Steigerwalt A. G. , Hollis D. G. , Yu V. L. . ( 1998;). Roseomonas gilardii sp. nov., In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List 65. Int J Syst Bacteriol 48: 627.[CrossRef]
    [Google Scholar]
  33. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425,[PubMed].
    [Google Scholar]
  34. Sánchez-Porro C. , Gallego V. , Busse H. J. , Kämpfer P. , Ventosa A. . ( 2009;). Transfer of Teichococcus ludipueritiae and Muricoccus roseus to the genus Roseomonas, as Roseomonas ludipueritiae comb. nov. and Roseomonas rosea comb. nov., respectively, and emended description of the genus Roseomonas . Int J Syst Evol Microbiol 59: 1193–1198 [CrossRef] [PubMed].
    [Google Scholar]
  35. Scherer P. , Kneifel H. . ( 1983;). Distribution of polyamines in methanogenic bacteria. J Bacteriol 154: 1315–1322,[PubMed].
    [Google Scholar]
  36. Smibert R. M. , Krieg N. R. . ( 1994;). General characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  37. Swofford D. L. . ( 2002;). paup*: Phylogenetic analysis using parsimony (*and other methods), version 4 Sunderland, MA: Sinauer Associates;.
    [Google Scholar]
  38. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  39. Tindall B. J. , Sikorski J. , Smibert R. M. , Krieg N. R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. , Schmidt T. M. , Snyder L. R. . Washington, DC: American Society for Microbiology Press; [CrossRef].
    [Google Scholar]
  40. Venkata Ramana V. , Sasikala Ch. , Takaichi S. , Ramana Ch. V. . ( 2010;). Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 33: 198–203 [CrossRef] [PubMed].
    [Google Scholar]
  41. Yoo S. H. , Weon H. Y. , Noh H. J. , Hong S. B. , Lee C. M. , Kim B. Y. , Kwon S. W. , Go S. J. . ( 2008;). Roseomonas aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58: 1482–1485 [CrossRef] [PubMed].
    [Google Scholar]
  42. Yoon J. H. , Kang S. J. , Oh H. W. , Oh T. K. . ( 2007;). Roseomonas terrae sp. nov. Int J Syst Evol Microbiol 57: 2485–2488 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yumoto I. , Hirota K. , Yamaga S. , Nodasaka Y. , Kawasaki T. , Matsuyama H. , Nakajima K. . ( 2004;). Bacillus asahii sp. nov., a novel bacterium isolated from soil with the ability to deodorize the bad smell generated from short-chain fatty acids. Int J Syst Evol Microbiol 54: 1997–2001 [CrossRef] [PubMed].
    [Google Scholar]
  44. Zhang Y. Q. , Yu L. Y. , Wang D. , Liu H. Y. , Sun C. H. , Jiang W. , Zhang Y. Q. , Li W. J. . ( 2008;). Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 58: 2070–2074 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000536
Loading
/content/journal/ijsem/10.1099/ijsem.0.000536
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error