1887

Abstract

A Gram-reaction-positive, high DNA G+C content, non-motile actinobacterium, strain D7-21, was isolated from dried bat dung inside a natural cave and its taxonomic status was examined by using a polyphasic approach. The 16S rRNA gene sequence study showed that the isolate belonged to the genus and formed a cluster with (98.98 % gene similarity), (98.62 %) and (97.66 %). Whole-cell hydrolysates contained -diaminopimelic acid, arabinose and galactose as the diagnostic diamino acid and sugars. MK-8(H) was the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, an unknown phosphoglycolipid and an unknown glycolipid. Mycolic acids were present. The major fatty acids were C, Cω9 and 10-methyl C. The DNA G+C content was 70.1 mol%. A battery of phenotypic features and DNA–DNA relatedness data support that strain D7-21 ( = KCTC 29469 = DSM 46727) represents a novel species of the genus , for which sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000534
2015-11-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4043.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000534&mimeType=html&fmt=ahah

References

  1. Adachi K., Katsuta A., Matsuda S., Peng X., Misawa N., Shizuri Y., Kroppenstedt R. M., Yokota A., Kasai H.. ( 2007;). Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol 57: 297–301 [CrossRef] [PubMed].
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. Methods Microbiol 18: 329–366 [CrossRef].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Felsenstein J.. ( 2008;). phylip (phylogeny inference package), version 3.68. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Goodfellow M., Chun J., Stackebrandt E., Kroppenstedt R. M.. ( 2002;). Transfer of Tsukamurella wratislaviensis Goodfellow et al. 1995 to the genus Rhodococcus as Rhodococcus wratislaviensis comb. nov. Int J Syst Evol Microbiol 52: 749–755 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. -N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardia strain. Int J Syst Bacteriol 24: 54–63 [CrossRef].
    [Google Scholar]
  10. Hopwood D. A., Bibb M. J., Chater K. F., Kieser T., Bruton C. J., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H.. ( 1985;). Genetic Manipulation of Streptomyces. A Laboratory Manual Norwich: John Innes Foundation;.
    [Google Scholar]
  11. Jones A. L., Goodfellow M.. ( 2012;). Genus IV. Rhodococcus. . In Bergey's Manual of Systematic Bacteriology, pp. 437–464. Edited by Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B..vol. 5, 2nd edn.., New York: Springer;.
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N.. New York: Academic Press; [CrossRef].
    [Google Scholar]
  13. Kämpfer P., Wellner S., Lohse K., Lodders N., Martin K.. ( 2013;). Rhodococcus cerastii sp. nov. and Rhodococcus trifolii sp. nov., two novel species isolated from leaf surfaces. Int J Syst Evol Microbiol 63: 1024–1029 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kämpfer P., Dott W., Martin K., Glaeser S. P.. ( 2014;). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64: 755–761 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kroppenstedt R. M.. ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics, pp. 173–199. Edited by Goodfellow M., Minnikin D. E.. (Society for Applied Bacteriology Technical Series vol. 20) London: Academic Press;.
    [Google Scholar]
  17. Lee S. D.. ( 2006a;). Actinocorallia cavernae sp. nov., isolated from a natural cave in Jeju, Korea. Int J Syst Evol Microbiol 56: 1085–1088 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lee S. D.. ( 2006b;). Amycolatopsis jejuensis sp. nov. and Amycolatopsis halotolerans sp. nov., novel actinomycetes isolated from a natural cave. Int J Syst Evol Microbiol 56: 549–553 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lee S. D.. ( 2006c;). Nocardia jejuensis sp. nov., a novel actinomycete isolated from a natural cave on Jeju Island, Republic of Korea. Int J Syst Evol Microbiol 56: 559–562 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lee S. D.. ( 2012;). Actinomadura rupiterrae sp. nov., isolated from cliff soil. Int J Syst Evol Microbiol 62: 990–995 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lee S. D.. ( 2013;). Spelaeicoccus albus gen. nov., sp. nov., an actinobacterium isolated from a natural cave. Int J Syst Evol Microbiol 63: 3958–3963 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lee S. D., Kang S.-O., Hah Y. C.. ( 2000;). Hongia gen. nov., a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 50: 191–199 [CrossRef] [PubMed].
    [Google Scholar]
  23. Li J., Zhao G.-Z., Long L.-J., Wang F.-Z., Tian X.-P., Zhang S., Li W.-J.. ( 2012;). Rhodococcus nanhaiensis sp. nov., an actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 62: 2517–2521 [CrossRef] [PubMed].
    [Google Scholar]
  24. MacFaddin J. F.. ( 1980;). Biochemical Tests for Identification of Medical Bacteria, 2nd edn.., Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  25. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  26. Minnikin D. E. M.. ( 1988;). Isolation and purification of mycobacterial wall lipids. . In Bacterial Cell Surface Techniques, pp. 125–135. Edited by Hancock I. C., Poxton I. R.. Chichester: Wiley;.
    [Google Scholar]
  27. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  28. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188: 221–233 [CrossRef].
    [Google Scholar]
  29. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  30. Nimaichand S., Sanasam S., Zheng L.-Q., Zhu W.-Y., Yang L.-L., Tang S.-K., Ningthoujam D. S., Li W. J.. ( 2013;). Rhodococcus canchipurensis sp. nov., an actinomycete isolated from a limestone deposit site. Int J Syst Evol Microbiol 63: 114–118 [CrossRef] [PubMed].
    [Google Scholar]
  31. Saddler G. S., Tavecchia P., Lociuro S., Zanol M., Colombo E., Selva E.. ( 1991;). Analysis of madurose and other actinomycete whole cell sugars by gas chromatography. J Microbiol Methods 14: 185–191 [CrossRef].
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  33. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  34. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  35. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  36. Uchida K., Aida K.. ( 1984;). An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 30: 131–134 [CrossRef].
    [Google Scholar]
  37. Wang Y.-X., Wang H.-B., Zhang Y.-Q., Xu L.-H., Jiang C.-L., Li W.-J.. ( 2008;). Rhodococcus kunmingensis sp. nov., an actinobacterium isolated from a rhizosphere soil. Int J Syst Evol Microbiol 58: 1467–1471 [CrossRef] [PubMed].
    [Google Scholar]
  38. Zhi X. Y., Li W.-J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59: 589–608 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zopf W.. ( 1891;). Über Ausscheidung von Fettfarbstoffen (Lipochromen) seitens gewisser Spaltpilze. Berichte der Deutschen Botanischen Gesellschaft 9: 22–28 (in German).
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000534
Loading
/content/journal/ijsem/10.1099/ijsem.0.000534
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error