1887

Abstract

A yellow-pigmented bacterium, designated strain GZJT-2, was isolated from the stem of (Thunb.) Prantl et Kündig collected from Taibai Mountain in Shaanxi Province, north-west China. Cells of strain GZJT-2 were Gram-reaction-negative, strictly aerobic, rod-shaped, non-spore-forming and non-motile. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GZJT-2 was a member of the genus , with sequence similarities of 92.1–96.9 % to type strains of recognized species of the genus (92.1 % to SY-6 and 96.9 % to JCM 12082). Strain GZJT-2 contained ubiquinone-10 (Q-10) as the predominant respiratory quinone and -homospermidine as the major polyamine. The major cellular fatty acids were summed feature 8 (comprising Cω7 and/or Cω6), summed feature 3 (comprising Cω7 and/or Cω6), C and C 2-OH. Phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, sphingoglycolipid, four unidentified phospholipids, an unidentified aminolipid and four unidentified lipids were detected in the polar lipid profile. The DNA G+C content was 62.5 ± 0.3 mol%. On the basis of data from phenotypic, phylogenetic and DNA–DNA relatedness studies, strain GZJT-2 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GZJT-2 ( = CCTCC AB 2013304 = KCTC 42739).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000532
2015-11-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4025.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000532&mimeType=html&fmt=ahah

References

  1. Bowman J. P. . ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [PubMed].[CrossRef]
    [Google Scholar]
  2. Busse H.-J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  3. Busse H.-J. , Denner E. B. M. , Buczolits S. , Salkinoja-Salonen M. , Bennasar A. , Kämpfer P. . ( 2003;). Sphingomonas aurantiaca sp. nov. Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53: 1253–1260 [CrossRef] [PubMed].
    [Google Scholar]
  4. Chen H. , Jogler M. , Rohde M. , Klenk H. P. , Busse H. J. , Tindall B. J. , Spröer C. , Overmann J. . ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . Int J Syst Evol Microbiol 62: 2835–2843 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52: 1551–1558 [CrossRef] [PubMed].
    [Google Scholar]
  6. Doetsch R. N. . ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General and Molecular Bacteriology, pp. 21–33. Edited by Gerdhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Kim B.-C. , Poo H. , Lee K. H. , Kim M. N. , Kwon O.-Y. , Shin K.-S. . ( 2012a;). Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha Maxim. Int J Syst Evol Microbiol 62: 55–60 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim S.-J. , Moon J.-Y. , Lim J.-M. , Ahn J.-H. , Weon H.-Y. , Ahn T.-Y. , Kwon S.-W. . ( 2014;). Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 64: 926–932 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lane D. J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  14. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  15. Ohta H. , Hattori R. , Ushiba Y. , Mitsui H. , Ito M. , Watanabe H. , Tonosaki A. , Hattori T. . ( 2004;). Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54: 2185–2190 [CrossRef] [PubMed].
    [Google Scholar]
  16. Parte A. C. . ( 2015;). List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.net/.
  17. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  18. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  19. Schenkel E. , Berlaimont V. , Dubois J. , Helson-Cambier M. , Hanocq M. . ( 1995;). Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668: 189–197 [CrossRef] [PubMed].
    [Google Scholar]
  20. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  21. Takeuchi M. , Kawai F. , Shimada Y. , Yokota A. . ( 1993;). Taxonomic study of polyethylene glycerol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16: 227–238 [CrossRef].
    [Google Scholar]
  22. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51: 1405–1417 [PubMed].[CrossRef]
    [Google Scholar]
  23. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  24. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tindall B. J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  26. Tindall B. J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  27. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  28. Wei L. , Ouyang S. , Wang Y. , Shen X. , Zhang L. . ( 2014;). Solirubrobacter phytolaccae sp. nov., an endophytic bacterium isolated from roots of Phytolacca acinosa Roxb. Int J Syst Evol Microbiol 64: 858–862 [CrossRef] [PubMed].
    [Google Scholar]
  29. Wei L. , Si M. , Long M. , Zhu L. , Li C. , Shen X. , Wang Y. , Zhao L. , Zhang L. . ( 2015;). Rhizobacter bergeniae sp. nov., isolated from the root of Bergenia scopulosa . Int J Syst Evol Microbiol 65: 479–484 [CrossRef] [PubMed].
    [Google Scholar]
  30. Wilson K. . ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . New York: Wiley;.
    [Google Scholar]
  31. Xie C. H. , Yokota A. . ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49: 345–349 [CrossRef] [PubMed].
    [Google Scholar]
  32. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34: 99–119 [CrossRef] [PubMed].
    [Google Scholar]
  33. Yabuuchi E. , Kosako Y. , Fujiwara N. , Naka T. , Matsunaga I. , Ogura H. , Kobayashi K. . ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium, Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52: 1485–1496 [CrossRef] [PubMed].
    [Google Scholar]
  34. Zhang L. , Wang Y. , Wei L. , Wang Y. , Shen X. , Li S. . ( 2013;). Taibaiella smilacinae gen. nov., sp. nov., an endophytic member of the family Chitinophagaceae isolated from the stem of Smilacina japonica, and emended description of Flavihumibacter petaseus . Int J Syst Evol Microbiol 63: 3769–3776 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zhu L. , Long M. , Si M. , Wei L. , Li C. , Zhao L. , Shen X. , Wang Y. , Zhang L. . ( 2014;). Asticcacaulis endophyticus sp. nov., a prosthecate bacterium isolated from the root of Geum aleppicum . Int J Syst Evol Microbiol 64: 3964–3969 [CrossRef] [PubMed].
    [Google Scholar]
  36. Zhu L. , Si M. , Li C. , Xin K. , Chen C. , Shi X. , Huang R. , Zhao L. , Shen X. , Zhang L. . ( 2015;). Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum . Int J Syst Evol Microbiol 65: 1160–1166 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000532
Loading
/content/journal/ijsem/10.1099/ijsem.0.000532
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error