1887

Abstract

A slightly yellow-pigmented strain (IMT-174) isolated from a river sediment in Guyana was studied in detail for its taxonomic position. Cells of the isolate appeared rod-shaped and stained Gram-negative. Comparative 16S rRNA gene sequence analysis showed that the isolate had the highest sequence similarities to type strains of (99.0 %), (98.9 %), (98.8 %) and (98.6 %). The 16S rRNA gene sequence similarities to all other species of the genus were below 98.5 %. Fatty acid analysis of whole-cell hydrolysates of the strain resulted in a pattern typical of members of the genus , with fatty acids iso-C, iso-C 2-OH, iso-Cω9 and iso-C 3-OH as major compounds. The polyamine pattern contained predominantly -homospermidine. The major quinone was menaquinone MK-6 and the only lipid identified in the polar lipid profile was phosphatidylethanolamine. In addition, 13 unidentified lipids were detected in moderate to major amounts. DNA–DNA hybridizations with type strains of , and resulted in values below 70 %. In addition to the genotypic differences, differentiating biochemical and chemotaxonomic properties confirmed that isolate IMT-174 represents a novel species, for which the name sp. nov. (type strain IMT-174 = LMG 28695 = CIP 110895) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000527
2015-11-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4019.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000527&mimeType=html&fmt=ahah

References

  1. Altenburger P. , Kämpfer P. , Makristathis A. , Lubitz W. , Busse H. J. . ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  2. Brosius J. , Palmer M. L. , Kennedy P. J. , Noller H. F. . ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75: 4801–4805 [CrossRef] [PubMed].
    [Google Scholar]
  3. Busse J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  4. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708.[CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Felsenstein J. . ( 2005;). phylip (phylogeny inference package) version 3.6. Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington;.
  7. Gallego V. , García M. T. , Ventosa A. . ( 2006;). Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56: 1589–1592 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  9. Herzog P. , Winkler I. , Wolking D. , Kämpfer P. , Lipski A. . ( 2008;). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58: 26–33 [CrossRef] [PubMed].
    [Google Scholar]
  10. Holmes B. , Steigerwalt A. G. , Nicholson A. C. . ( 2013;). DNA–DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 63: 4639–4662 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hugo C. J. , Segers P. , Hoste B. , Vancanneyt M. , Kersters K. . ( 2003;). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53: 771–777 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kämpfer P. . ( 1990;). Evaluation of the Titertek-Enterobac-Automated System (TTE-AS) for identification of members of the family Enterobacteriaceae . Zentralbl Bakteriol 273: 164–172 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kämpfer P. , Kroppenstedt R. M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  14. Kämpfer P. , Steiof M. , Dott W. . ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kämpfer P. , Dreyer U. , Neef A. , Dott W. , Busse H. J. . ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53: 93–97 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kämpfer P. , Vaneechoutte M. , Lodders N. , De Baere T. , Avesani V. , Janssens M. , Busse H. J. , Wauters G. . ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 59: 2421–2428 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kämpfer P. , McInroy J. A. , Glaeser S. P. . ( 2014;). Chryseobacterium zeae sp. nov., Chryseobacterium arachidis sp. nov., and Chryseobacterium geocarposphaerae sp. nov. isolated from the rhizosphere environment. Antonie van Leeuwenhoek 105: 491–500 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kämpfer P. , McInroy J. A. , Glaeser S. P. . ( 2015;). Chryseobacterium rhizoplanae sp. nov., isolated from the rhizoplane environment. Antonie van Leeuwenhoek 107: 533–538 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kim K. K. , Bae H. S. , Schumann P. , Lee S. T. . ( 2005;). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55: 133–138 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim K. K. , Lee K. C. , Oh H. M. , Lee J. S. . ( 2008;). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58: 533–537 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kirk K. E. , Hoffman J. A. , Smith K. A. , Strahan B. L. , Failor K. C. , Krebs J. E. , Gale A. N. , Do T. D. , Sontag T. C. , other authors . ( 2013;). Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 63: 4777–4783 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar Buchner,A. , Lai T. , Steppi S. , other authors . ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  24. Montero-Calasanz M. C. , Göker M. , Rohde M. , Spröer C. , Schumann P. , Busse H.-J. , Schmid M. , Tindall B. J. , Klenk H. P. , Camacho M. . ( 2013;). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . Int J Syst Evol Microbiol 63: 4386–4395 [CrossRef] [PubMed].
    [Google Scholar]
  25. Nguyen N. L. , Kim Y. J. , Hoang V. A. , Yang D. C. . ( 2013;). Chryseobacterium ginsengisoli sp. nov., isolated from the rhizosphere of ginseng and emended description of Chryseobacterium gleum . Int J Syst Evol Microbiol 63: 2975–2980 [CrossRef] [PubMed].
    [Google Scholar]
  26. Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  27. Reichenbach H. . ( 1989;). The order Cytophagales Leadbetter 1974, 99AL . . In Bergey's Manual of Systematic Bacteriology, pp. 2011–2073. Edited by Staley J. T. , Bryant M. P. , Pfennig N. , Holt J. C. . . vol 3 Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  28. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  29. Stamatakis A. . ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  30. Stolz A. , Busse H.-J. , Kämpfer P. . ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  31. Strahan B. L. , Failor K. C. , Batties A. M. , Hayes P. S. , Cicconi K. M. , Mason C. T. , Newman J. D. . ( 2011;). Chryseobacterium piperi sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 61: 2162–2166 [CrossRef] [PubMed].
    [Google Scholar]
  32. Tindall B. J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  33. Tindall B. J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  34. Vandamme P. , Bernardet J.-F. , Segers P. , Kersters K. , Holmes B. . ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  35. Weon H. Y. , Kim B. Y. , Yoo S. H. , Kwon S. W. , Cho Y. H. , Go S. J. , Stackebrandt E. . ( 2006;). Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56: 1501–1504 [CrossRef] [PubMed].
    [Google Scholar]
  36. Wu Y. F. , Wu Q. L. , Liu S. J. . ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum . Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
  37. Yarza P. , Richter M. , Peplies J. , Euzéby J. , Amann R. , Schleifer K. H. , Ludwig W. , Glöckner F. O. , Rosselló-Móra R. . ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  38. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000527
Loading
/content/journal/ijsem/10.1099/ijsem.0.000527
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error