1887

Abstract

A Gram-stain-negative, yellow, non-spore-forming, strictly aerobic bacterium, designated C3, was isolated from a cyanobacterial culture pond. Cells were halophilic, rod-shaped and able to move by gliding. Growth of strain C3 was observed at 15–30 °C (optimum 25 °C), pH 6.0–9.0 (optimum pH 7.5), and in the presence of 1–7 % (w/v) NaCl (optimum 2–3 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain C3 formed a distinct lineage within the family and exhibited the highest similarity (95.21 %) to the type strains of , , and , and ‘’ HD-44. The only isoprenoid quinone present within strain C3 was menaquinone 6 (MK-6). The G+C content of genomic DNA was 41.5 mol%. The major polar lipids were phosphatidylethanolamine and three unidentified lipids. The predominant cellular fatty acids (>5 % of the total fatty acids) were iso-C G, iso-C, iso-C 3-OH, iso-C 3-OH, and summed feature 3 (comprising Cω7 and/or Cω6). On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain C3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is C3 ( = KCTC 42508 = CGMCC 1.15112).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000526
2015-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3997.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000526&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barbeyron T., Kean K., Forterre P.. ( 1984;). DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160: 586–590 [PubMed].
    [Google Scholar]
  3. Barbeyron T., L'Haridon S., Corre E., Kloareg B., Potin P.. ( 2001;). Zobellia galactanovorans gen. nov., sp. nov., a marine species of Flavobacteriaceae isolated from a red alga, and classification of [Cytophag] auliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Zobellia uliginosa gen. nov., comb. nov. Int J Syst Evol Microbiol 51: 985–997 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barbeyron T., Carpentier F., L'haridon S., Schüler M., Michel G., Amann R.. ( 2008;). Description of Maribacter forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 58: 790–797 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bruns A., Rohde M., Berthe-Corti L.. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51: 1997–2006 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cho K. H., Hong S. G., Cho H. H., Lee Y. K., Chun J., Lee H. K.. ( 2008;). Maribacter arcticus sp. nov., isolated from Arctic marine sediment. Int J Syst Evol Microbiol 58: 1300–1303 [CrossRef] [PubMed].
    [Google Scholar]
  8. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261 [CrossRef] [PubMed].
    [Google Scholar]
  9. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. Methods Microbiol 18: 329–366 [CrossRef].
    [Google Scholar]
  10. Dong X. Z., Cai M. Y.. ( 2001;). Determinative manual for routine bacteriology. Beijing: Scientific Press.;
  11. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  12. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Guillard R. R., Ryther J. H.. ( 1962;). Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8: 229–239 [CrossRef] [PubMed].
    [Google Scholar]
  15. Jung Y. T., Lee J. S., Yoon J. H.. ( 2014;). Maribacter caenipelagi sp. nov., a member of the Flavobacteriaceae isolated from a tidal flat sediment of the Yellow Sea in Korea. Antonie van Leeuwenhoek 106: 733–742 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kamekura M.. ( 1993;). Lipids of extreme halophiles. . In The Biology of Halophilic Bacteria, pp. 135–161. Edited by Vreeland R. H., Hochstein L. I.. Boca Raton: CRC Press;.
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  19. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  20. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  21. Lo N., Jin H. M., Jeon C. O.. ( 2013;). Maribacter aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus Maribacter. Int J Syst Evol Microbiol 63: 3409–3414 [CrossRef] [PubMed].
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  23. Nedashkovskaya O. I., Kim S. B., Han S. K., Lysenko A. M., Rohde M., Rhee M. S., Frolova G. M., Falsen E., Mikhailov V. V., Bae K. S.. ( 2004;). Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp. nov., Maribacter aquivivus sp. nov., Maribacter orientalis sp. nov. and Maribacter ulvicola sp. nov. Int J Syst Evol Microbiol 54: 1017–1023 [CrossRef] [PubMed].
    [Google Scholar]
  24. Nedashkovskaya O. I., Kim S. B., Lee K. H., Bae K. S., Frolova G. M., Mikhailov V. V., Kim I. S.. ( 2005;). Pibocella ponti gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi. Int J Syst Evol Microbiol 55: 177–181 [CrossRef] [PubMed].
    [Google Scholar]
  25. Nedashkovskaya O. I., Vancanneyt M., De Vos P., Kim S. B., Lee M. S., Mikhailov V. V.. ( 2007;). Maribacter polysiphoniae sp. nov., isolated from a red alga. Int J Syst Evol Microbiol 57: 2840–2843 [CrossRef] [PubMed].
    [Google Scholar]
  26. Nedashkovskaya O. I., Kim S. B., Mikhailov V. V.. ( 2010;). Maribacter stanieri sp. nov., a marine bacterium of the family Flavobacteriaceae. Int J Syst Evol Microbiol 60: 214–218 [CrossRef] [PubMed].
    [Google Scholar]
  27. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  28. Reichenbach H., Kleinig H., Achenbach H.. ( 1974;). The pigments of Flexibacter elegans: novel and chemosystematically useful compounds. Arch Microbiol 101: 131–144 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967.
    [Google Scholar]
  30. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425,[PubMed].
    [Google Scholar]
  31. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P.. Washington, D.C.: American Society for Microbiology;.
    [Google Scholar]
  32. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  34. Wang G., Fan J., Wu H., Zhang X., Li G., Zhang H., Yang X., Ye F., Xiang W., Li X.. ( 2013;). Nonhongiella spirulinensis gen. nov., sp. nov., a bacterium isolated from a cultivation pond of Spirulina platensis in Sanya, China. Antonie van Leeuwenhoek 104: 933–939 [CrossRef] [PubMed].
    [Google Scholar]
  35. Weerawongwiwat V., Kang H., Jung M. Y., Kim W.. ( 2013;). Maribacter chungangensis sp. nov., isolated from a green seaweed, and emended descriptions of the genus Maribacter and Maribacter arcticus. Int J Syst Evol Microbiol 63: 2553–2558 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yoon J. H., Kang S. J., Lee S. Y., Lee C. H., Oh T. K.. ( 2005;). Maribacter dokdonensis sp. nov., isolated from sea water off a Korean island, Dokdo. Int J Syst Evol Microbiol 55: 2051–2055 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zhang G. I., Hwang C. Y., Kang S. H., Cho B. C.. ( 2009;). Maribacter antarcticus sp. nov., a psychrophilic bacterium isolated from a culture of the Antarctic green alga Pyramimonas gelidicola. Int J Syst Evol Microbiol 59: 1455–1459 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000526
Loading
/content/journal/ijsem/10.1099/ijsem.0.000526
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error