1887

Abstract

A Gram-stain-negative, aerobic, non-motile, rod-shaped, flexirubin-producing bacterium, designated strain CC-CZW010, was isolated from the edible sea urchin in Penghu Island, Taiwan. The isolate grew optimally at pH 7.0 and 30 °C in the presence of 2 % (w/v) NaCl. The most closely related strains in terms of 16S rRNA gene sequence similarity were NBRC 108747 (97.6 %) and KCTC 12483 (96.7 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed a distinct taxonomic position attained by strain CC-CZW010 with respect to other species of the genus . Strain CC-CZW010 possessed iso-C, anteiso-C, iso-C 3-OH, summed feature 3 (comprising Cω7/Cω6) and summed feature 9 (comprising C 10-methyl/iso-Cω9) as predominant fatty acids. The major polar lipid profile consisted of phosphatidylethanolamine, two unidentified lipids and five aminolipids. The polyamine pattern contained the major compound -homospermidine. Menaquinone 6 (MK-6) was the predominant respiratory quinone, and the G+C content of the genomic DNA was 36.4 mol%. According to distinct phylogenetic, phenotypic and chemotaxonomic features, strain CC-CZW010 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC-CZW010 ( = BCRC 80786 = JCM 30470).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000524
2015-11-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3985.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000524&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J.-F., Hugo C., Bruun B.. ( 2006;). The genera Chryseobacterium and Elizabethkingia. . In The Prokaryotesvol. 7, 3rd edn.., pp. 638–676. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer; [CrossRef].
    [Google Scholar]
  3. Bernardet J.-F., Hugo C., Bruun B.. ( 2011;). Genus VII. Chryseobacterium Vandamme et al. 1994. . In Bergey's Manual of Systematic Bacteriologyvol. 4, 2nd edn.., pp. 180–196. Edited by Krieg N. R., Ludwig W., Whitman W. B., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A.. New York: Springer;.
    [Google Scholar]
  4. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  5. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  9. Holmes B., Steigerwalt A. G., Nicholson A. C. A.. ( 2013;). DNA-DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov.. Int J Syst Evol Microbiol 63: 4639–4662 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H. J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 59: 2421–2428 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kämpfer P., Poppel M. T., Wilharm G., Busse H.-J., McInroy J. A., Glaeser S. P.. ( 2014;). Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 64: 1419–1427 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim K. K., Lee K. C., Oh H. M., Lee J. S.. ( 2008;). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58: 533–537 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.-S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Loch T. P., Faisal M.. ( 2014;). Chryseobacterium aahli sp. nov., isolated from lake trout (Salvelinus namaycush) and brown trout (Salmo trutta), and emended descriptions of Chryseobacterium ginsenosidimutans and Chryseobacterium gregarium. Int J Syst Evol Microbiol 64: 1573–1579 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  16. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  17. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  18. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  19. Paisley R.. ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;.
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  22. Scherer P., Kneifel H.. ( 1983;). Distribution of polyamines in methanogenic bacteria. J Bacteriol 154: 1315–1322 [PubMed].
    [Google Scholar]
  23. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35: 151–154 [CrossRef].
    [Google Scholar]
  24. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  26. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  27. Venil C. K., Nordin N., Zakaria Z. A., Ahmad W. A.. ( 2014;). Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int J Syst Evol Microbiol 64: 3153–3159 [CrossRef] [PubMed].
    [Google Scholar]
  28. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  29. Wu Y. F., Wu Q. L., Liu S. J.. ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000524
Loading
/content/journal/ijsem/10.1099/ijsem.0.000524
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error