1887

Abstract

A taxonomic study was performed on 15 bacterial isolates from the caeca of gnotobiotic mice that had been fed with thermophile-fermented compost. The 15 isolates were thermophilic, Gram-stain-positive, facultatively anaerobic, endospore-forming bacteria, and were most closely related to CNCM I-1378. The 16S rRNA gene sequence of strain N-11, selected as representative of this new group, showed a similarity of 99.4 % with CNCM I-1378, 94.7 % with R-6488, and 94.4 % with MO-04. The isolates were then classified into two distinct groups based on a (GTG)-fingerprint analysis. Two isolates, N-11 and N-21, were the representatives of these two groups, respectively.` The N-11 and N-21 isolates showed 66–71 % DNA–DNA relatedness with one other, but had less than 37 % DNA–DNA relatedness with LMG 18084. The other 13 isolates showed DNA–DNA relatedness values above 74 % with the N-11 isolate. All 15 isolates grew at 25–60 °C (optimum 50 °C), pH 6–8 (optimum pH 7) and were capable of growing on a medium containing 6 % (w/v) NaCl (optimum 0.5 %). The 15 isolates could be distinguished from LMG 18084 because they showed Tween 80 hydrolysis activity and did not produce acid from melibiose. The major fatty acids were anteiso-C, C, iso-C, iso-C and iso-C. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and several unidentified phospholipids. The diagnostic diamino acid in the cell-wall peptidoglycan was -diaminopimelic acid. The menaquinone was MK-7. The DNA G+C content was 37.9 mol%. Based on the phenotypic properties, the 15 strains represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is N-11 ( = NRBC 110226 = LMG 28201).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000516
2015-11-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3944.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000516&mimeType=html&fmt=ahah

References

  1. Bartholomew J. W., Mittwer T.. ( 1950;). A simplified bacterial spore stain. Stain Technol 25: 153–156 [PubMed].
    [Google Scholar]
  2. Colenutt C., Cutting S. M.. ( 2014;). Use of Bacillus subtilis PXN21 spores for suppression of Clostridium difficile infection symptoms in a murine model. FEMS Microbiol Lett 358: 154–161 [CrossRef] [PubMed].
    [Google Scholar]
  3. Combet-Blanc Y., Ollivier B., Streicher C., Patel B. K. C., Dwivedi P. P., Pot B., Prensier G., Garcia J. L.. ( 1995;). Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45: 9–16 [CrossRef] [PubMed].
    [Google Scholar]
  4. Coorevits A., Logan N. A., Dinsdale A. E., Halket G., Scheldeman P., Heyndrickx M., Schumann P., Van Landschoot A., De Vos P.. ( 2011;). Bacillus thermolactis sp. nov., isolated from dairy farms, and emended description of Bacillus thermoamylovorans. Int J Syst Evol Microbiol 61: 1954–1961 [CrossRef] [PubMed].
    [Google Scholar]
  5. Dye D. W.. ( 1962;). The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. N Z J Sci 5: 393–416.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  7. Gevers D., Huys G., Swings J.. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205: 31–36 [CrossRef] [PubMed].
    [Google Scholar]
  8. Harper J. J., Davis G. H. G.. ( 1979;). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29: 56–58 [CrossRef].
    [Google Scholar]
  9. Henriques A. O., Moran C. P. Jr. ( 2007;). Structure, assembly, and function of the spore surface layers. Annu Rev Microbiol 61: 555–588 [CrossRef] [PubMed].
    [Google Scholar]
  10. Ichinose S., Tagami M., Muneta T., Mukohyama H., Sekiya I.. ( 2013;). Comparative sequential morphological analyses during in vitro chondrogenesis and osteogenesis of mesenchymal stem cells embedded in collagen gels. Med Mol Morphol 46: 24–33 [CrossRef] [PubMed].
    [Google Scholar]
  11. Ishii K., Fukui M., Takii S.. ( 2000;). Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89: 768–777 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jeong J. S., Kim I. H.. ( 2014;). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poult Sci 93: 3097–3103 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kämpfer P.. ( 1994;). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17: 86–98 [CrossRef] [PubMed].
    [Google Scholar]
  14. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high-performance liquid chromatography of its nuclease P1 hydorlysate. Agric Biol Chem 48: 3169–3172 [CrossRef].
    [Google Scholar]
  15. Komagata K., Suzuki K.. ( 1987;). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  16. Logan N. A., de Vos O.. ( 2009;). Genus I. Bacillus. . In Bergey's Manual of Systematic Bacteriology, pp. 21–128. Edited by de Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B..vol. 3 New York: Springer;.
    [Google Scholar]
  17. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  18. Miyamoto H., Kodama H., Udagawa M., Mori K., Matsumoto J., Oosaki H., Oosaki T., Ishizeki M., Ishizeki D., other authors. ( 2012;). The oral administration of thermophile-fermented compost extract and its influence on stillbirths and growth rate of pre-weaning piglets. Res Vet Sci 93: 137–142 [CrossRef] [PubMed].
    [Google Scholar]
  19. Miyamoto H., Seta M., Horiuchi S., Iwasawa Y., Naito T., Nishida A., Miyamoto H., Matsushita T., Itoh K., Kodama H.. ( 2013;). Potential probiotic thermophiles isolated from mice after compost ingestion. J Appl Microbiol 114: 1147–1157 [CrossRef] [PubMed].
    [Google Scholar]
  20. Niisawa C., Oka S., Kodama H., Hirai M., Kumagai Y., Mori K., Matsumoto J., Miyamoto H., Miyamoto H.. ( 2008;). Microbial analysis of a composted product of marine animal resources and isolation of bacteria antagonistic to a plant pathogen from the compost. J Gen Appl Microbiol 54: 149–158 [CrossRef] [PubMed].
    [Google Scholar]
  21. Partanen P., Hultman J., Paulin L., Auvinen P., Romantschuk M.. ( 2010;). Bacterial diversity at different stages of the composting process. BMC Microbiol 10: 94 [CrossRef] [PubMed].
    [Google Scholar]
  22. Pearson W. R., Lipman D. J.. ( 1988;). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85: 2444–2448 [CrossRef] [PubMed].
    [Google Scholar]
  23. Poudel P., Miyamoto H., Miyamoto H., Okugawa Y., Tashiro Y., Sakai K.. ( 2014;). Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 64: 2668–2674 [CrossRef] [PubMed].
    [Google Scholar]
  24. Ryckeboer J., Mergaert J., Vaes K., Klammer S., De Clercq D., Coosemans J., Insam H., Swings J.. ( 2003;). A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53: 349–410.
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  26. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  27. Slifkin M.. ( 2000;). Tween 80 opacity test responses of various Candida species. J Clin Microbiol 38: 4626–4628 [PubMed].
    [Google Scholar]
  28. Tanaka R., Miyamoto H., Kodama H., Kawachi N., Udagawa M., Miyamoto H., Matsushita T.. ( 2010;). Feed additives with thermophile-fermented compost enhance concentrations of free amino acids in the muscle of the flatfish Paralichthys olivaceus. J Gen Appl Microbiol 56: 61–65 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128: 1959–1968.
    [Google Scholar]
  30. Wang L. T., Lee F. L., Tai C. J., Kasai H.. ( 2007;). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. Int J Syst Evol Microbiol 57: 1846–1850 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000516
Loading
/content/journal/ijsem/10.1099/ijsem.0.000516
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error