1887

Abstract

Strain D40P, representing a novel Gram-stain-negative, obligately aerobic, bacteriochlorophyll -containing bacterium of the α-4 subgroup of the phylum , was isolated from permafrost soil of Kunlun mountains gap, Qinghai-Tibet plateau. Cells were non-motile rod–cocci and formed brown-pigmented colonies. According to the absorption spectrum, carotenoids and two different photosynthetic light-harvesting complexes, an LHI complex and a B800-835-type peripheral LHII complex, were present in the cells. The strain was oxidase-negative and catalase-positive. The predominant fatty acids of strain D40P were summed feature 3 (Cω7 and/or Cω6), Cω6 and summed feature 8 (Cω7 and/or Cω6). The main polar lipids were phosphatidylethanolamine, phosphatidylglycerol, unidentified phospholipid, two glycolipids and sphingoglycolipid. The major respiratory quinone was ubiquinone-10, whereas ubiquinone-9 was present in smaller amounts. The 16S rRNA gene sequence similarity to the closest phylogenetic relative, JCM 18140, was 97.5 %. DNA–DNA relatedness ( ) between strain D40P and was 12.4 °C. The G+C content of the genomic DNA of strain D40P was 67.4 mol%. Accordingly, the strain represents a novel species, for which the name sp. nov. is proposed. The type strain is D40P ( = CGMCC 1.12714 = JCM 19740). An emended description of the genus is also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000514
2015-11-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3920.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000514&mimeType=html&fmt=ahah

References

  1. Bernardet J. F., Nakagawa Y., Holmes B.. ( 2002;). Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  2. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993 [PubMed].
    [Google Scholar]
  3. da Costa M. S., Albuquerque L., Nobre M., Wait R.. ( 2011a;). The extraction and identification of respiratory lipoquinones of prokaryotes and their use in taxonomy. Methods Microbiol 38: 197–206 [CrossRef].
    [Google Scholar]
  4. da Costa M. S., Albuquerque L., Nobre M., Wait R.. ( 2011b;). The identification of polar lipids in prokaryotes. Methods Microbiol 38: 165–181 [CrossRef].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Fukuda W., Chino Y., Araki S., Kondo Y., Imanaka H., Kanai T., Atomi H., Imanaka T.. ( 2014;). Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock. Int J Syst Evol Microbiol 64: 2034–2040 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gich F., Overmann J.. ( 2006;). Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56: 847–854 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gonzalez J. M., Saiz-Jimenez C.. ( 2005;). A simple fluorimetric method for the estimation of DNA-DNA relatedness between closely related microorganisms by thermal denaturation temperatures. Extremophiles 9: 75–79 [CrossRef] [PubMed].
    [Google Scholar]
  10. Han L., Wu S. J., Qin C. Y., Zhu Y. H., Lu Z. Q., Xie B., Lv J.. ( 2014;). Hymenobacter qilianensis sp. nov., isolated from a subsurface sandstone sediment in the permafrost region of Qilian Mountains. China and emended description of the genus Hymenobacter. Antonie van Leeuwenhoek 105: 971–978 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kishino H., Hasegawa M.. ( 1989;). Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29: 170–179 [CrossRef] [PubMed].
    [Google Scholar]
  13. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  14. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. FEMS Microbiol Rev 25: 39–67 [CrossRef] [PubMed].
    [Google Scholar]
  15. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  16. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Netwark, DE: MIDI Inc;.
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  18. Tan X., Zhang R. G., Meng T. Y., Liang H. Z., Lv J.. ( 2014;). Taibaiella chishuiensis sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 64: 1795–1801 [CrossRef] [PubMed].
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tian M., Zhang R. G., Han L., Zhao X. M., Lv J.. ( 2015;). Dyadobacter sediminis sp. nov., isolated from a subterranean sediment sample. Int J Syst Evol Microbiol 65: 827–832 [CrossRef] [PubMed].
    [Google Scholar]
  21. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60: 249–266 [CrossRef] [PubMed].
    [Google Scholar]
  22. Vishnivetskaya T., Kathariou S., McGrath J., Gilichinsky D., Tiedje J. M.. ( 2000;). Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4: 165–173 [CrossRef] [PubMed].
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P., Kandler O., Krichevsky M. I., Moore L. H., Moore W., Murray R., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  24. Zhang R. G., Tan X., Zhao X. M., Deng J., Lv J.. ( 2014;). Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. Int J Syst Evol Microbiol 64: 1481–1487 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000514
Loading
/content/journal/ijsem/10.1099/ijsem.0.000514
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error