1887

Abstract

Two Gram-stain-positive bacterial isolates, strain 2385/12 and strain 2673/12 were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified CCUG 37330 (96.3 % similarity) as the nearest relative of strain 2385/12 and suggested the isolate represented a novel species. DSM 45392 (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12. Results from DNA–DNA hybridization with the type strain of demonstrated that strain 2673/12 also represented a novel species. Strain 2385/12 showed a quinone system consisting predominantly of menaquinones MK-8(H) and MK-9(H) whereas strain 2673/12 contained only MK-8(H) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12 whereas it was only found in moderate amounts in strain 2385/12. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12 and spermidine in strain 2673/12. In the fatty acid profiles, predominantly Cω9 and C were detected. The two strains are distinguishable from each other and the nearest related established species of the genus phylogenetically and phenotypically. In conclusion, two novel species of the genus are proposed, namely sp. nov. (type strain, 2385/12 = CCUG 65456 = LMG 28165) and sp. nov. (type strain, 2673/12 = CCUG 65455 = LMG 28166).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000510
2015-11-01
2020-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3885.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000510&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J.. ( 1997;). Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium, Corynebacterium, and Tsukamurella. Int J Syst Bacteriol 47: 270–277 [CrossRef].
    [Google Scholar]
  3. Bernard K. A., Funke G.. ( 2012;). Genus I. Corynebacterium Lehmann and Neumann 1896, 350AL emend. Bernard, Wiebe Burdz, Reimer, Ng, Singh, Schindle and Pacheco 2010, 877. . In Bergey's Manual of Systematic Bacteriology, pp. 245–289. Edited by Goodfellow M., Kämpfer P., Busse H. -J., Trujillo M. E., Suzuki K., Ludwig W., Whitman W. B..vol. 5 (The Actinobacteria), 2nd edn.., New York: Springer;.
    [Google Scholar]
  4. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  5. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354,[PubMed].
    [Google Scholar]
  6. Collins M. D., Goodfellow M., Minnikin D. E.. ( 1982;). A survey of the structures of mycolic acids in Corynebacterium and related taxa. J Gen Microbiol 128: 129–149 [PubMed].
    [Google Scholar]
  7. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kämpfer P., Busse H.-J.. ( 2012;). Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 62: 2194–2200 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fudou R., Jojima Y., Seto A., Yamada K., Kimura E., Nakamatsu T., Hiraishi A., Yamanaka S.. ( 2002;). Corynebacterium efficiens sp. nov., a glutamic-acid-producing species from soil and vegetables. Int J Syst Evol Microbiol 52: 1127–1131 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  10. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  11. Kämpfer P., Steiof M., Dott W.. ( 1991;). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21: 227–251 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kämpfer P., Lodders N., Warfolomeow I., Falsen E., Busse H.-J.. ( 2009;). Corynebacterium lubricantis sp. nov., isolated from a coolant lubricant. Int J Syst Evol Microbiol 59: 1112–1115 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  15. Lee H. J., Cho S.-L., Jung M. Y., Nguyen T. H. V., Le V. P., Park H. K., Jung M. Y., Kim W., Cho S.-L., Jung Y.-C.. ( 2009;). Corynebacterium doosanense sp. nov., isolated from activated sludge Int J Syst Evol Microbiol 59: 2734–2737.
    [Google Scholar]
  16. Lehmann K. B., Neumann R.. ( 1896;). Atlas und Grundriss der Bakteriologie und Lehrbuch der speciellen bakteriologischen Diagnostik., München: J.F. Lehmann;.
    [Google Scholar]
  17. Moaledj K.. ( 1986;). Comparison of Gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5: 303–310 [CrossRef].
    [Google Scholar]
  18. Nahaie M. R., Goodfellow M., Minnikin D. E., Hájek V.. ( 1984;). Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J Gen Microbiol 130: 2427–2437 [PubMed].
    [Google Scholar]
  19. Pantu˚ček R., Švec P., Dajcs J. J., Machová I., Černohlávková J., Šedo O., Gelbíčová T., Mašlanˇová I., Doškarˇ J., other authors. ( 2013;). Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst Appl Microbiol 36: 90–95 [CrossRef] [PubMed].
    [Google Scholar]
  20. Riegel P., Ruimy R., Renaud F. N. R., Freney J., Prevost G., Jehl F., Christen R., Monteil H.. ( 1997;). Corynebacterium singulare sp. nov., a new species for urease-positive strains related to Corynebacterium minutissimum. Int J Syst Bacteriol 47: 1092–1096 [CrossRef] [PubMed].
    [Google Scholar]
  21. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 611–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  23. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  26. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  27. Wu C.-Y., Zhuang L., Zhou S.-G., Li F.-B., He J.. ( 2011;). Corynebacterium humireducens sp. nov., an alkaliphilic, humic acid-reducing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 61: 882–887 [CrossRef] [PubMed].
    [Google Scholar]
  28. Yassin A. F., Kroppenstedt R. M., Ludwig W.. ( 2003;). Corynebacterium glaucum sp. nov. Int J Syst Evol Microbiol 53: 705–709 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48: 179–186 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000510
Loading
/content/journal/ijsem/10.1099/ijsem.0.000510
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error