1887

Abstract

A strain of free-living obligately anaerobic, halophilic spirochaete, SL, was isolated from a sample of a cyanobacterial mat of the hypersaline Solar Lake, Sinai shore. The strain had motile helical cells, 0.35–0.40 × 6–10 μm. Strain SL exhibited high resistance to NaCl among known halophilic spirochaetes growing at NaCl concentrations from 2 to 12 % (optimum growth at 7 %). The strain grew at temperatures from 10 to 32 °C (optimum at 28 °C) and pH from 6 to 8.5 (optimum at pH 7.0–7.5). Carbohydrates, but not alcohols, organic acids or nitrogenous compounds (peptone, yeast extract and amino acids), were used as energy substrates for growth. Ethanol, acetate, lactate, H and CO were the products of glucose fermentation. Sulfide was produced in the presence of S or thiosulfate in the medium. The DNA G+C content was 44.7 mol%. Based on 16S rRNA gene sequence analysis, strain SL clustered within the genus , exhibiting 94.2 and 93.7 % similarity with its closest relatives, DSM 160554 and DSM 11293, respectively; similarity with other species did not exceed 86 %. The phenotypic and chemotaxonomic characteristics of the strain, as well as the results of phylogenetic analysis support the classification of strain SL as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SL ( = DSM 14994 = UNIQEM U 783).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000506
2015-11-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3872.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000506&mimeType=html&fmt=ahah

References

  1. Abt B., Han C., Scheuner C., Lu M., Lapidus A., Nolan M., Lucas S., Hammon N., Deshpande S., other authors. ( 2012;). Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta. Stand Genomic Sci 6: 194–209 [CrossRef] [PubMed].
    [Google Scholar]
  2. Berlanga M., Aas J. A., Paster B. J., Boumenna T., Dewhirst F. E., Guerrero R.. ( 2008;). Phylogenetic diversity and temporal variation in the Spirochaeta populations from two Mediterranean microbial mats. Int Microbiol 11: 267–274 [PubMed].
    [Google Scholar]
  3. Dröge S., Fröhlich J., Radek R., König H.. ( 2006;). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 72: 392–397 [CrossRef] [PubMed].
    [Google Scholar]
  4. Dubinina G. A., Grabovich M. Yu., Leshcheva N. V.. ( 1993a;). Occurrence, structure and metabolic activity of Thiodendron sulfur mats in various saltwater environments. Microbiology (English translation of Mikrobiologiya) 62: 450–456.
    [Google Scholar]
  5. Dubinina G. A., Leshcheva N. V., Grabovich M. Yu.. ( 1993b;). The colorless sulfur bacterium Thiodendron is actually a symbiotic association of spirochetes and sulfidogens. Microbiology (English translation of Mikrobiologiya) 62: 432–444.
    [Google Scholar]
  6. Dubinina G. A., Grabovich M. Yu., Chernyshova Yu. Yu.. ( 2004;). The role of oxygen in the regulation of the metabolism of aerotolerant spirochetes, the main component of Thiodendron bacterial sulfur mats. Microbiology (English translation of Microbiologiya) 73: 734–740 [CrossRef] [PubMed].
    [Google Scholar]
  7. Dubinina G., Grabovich M., Leshcheva N., Rainey F. A., Gavrish E.. ( 2011;). Spirochaeta perfilievii sp. nov., an oxygen-tolerant, sulfide-oxidizing, sulfur- and thiosulfate-reducing spirochaete isolated from a saline spring. Int J Syst Evol Microbiol 61: 110–117 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  9. Fracek S. P. Jr, Stolz J. F.. ( 1985;). Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. Arch Microbiol 142: 317–325 [CrossRef] [PubMed].
    [Google Scholar]
  10. Gerritsen J., Fuentes S., Grievink W., van Niftrik L., Tindall B. J., Timmerman H. M., Rijkers G. T., Smidt H.. ( 2014;). Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastro-intestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov. and Asaccharospora gen. nov. Int J Syst Evol Microbiol 64: 1600–1616 [CrossRef] [PubMed].
    [Google Scholar]
  11. Greenberg E. P., Canale-Parola E.. ( 1976;). Spirochaeta halophila sp. n., a facultative anaerobe from a high-salinity pond. Arch Microbiol 110: 185–194 [CrossRef] [PubMed].
    [Google Scholar]
  12. Harris J. K., Caporaso J. G., Walker J. J., Spear J. R., Gold N. J., Robertson C. E., Hugenholtz P., Goodrich J., McDonald D., other authors. ( 2013;). Phylogenetic stratigraphy in the Guerrero Negro hypersaline microbial mat. ISME J 7: 50–60 [CrossRef] [PubMed].
    [Google Scholar]
  13. Janssen P. H., Morgan H. W.. ( 1992;). Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213–217 [CrossRef] [PubMed].
    [Google Scholar]
  14. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolismvol. 3, pp. 21–132. Edited by Munro H. N.. New York: Academic Press; [CrossRef].
    [Google Scholar]
  15. Krumbein W. E., Cohen Y.. ( 1977;). Primary production, mat formation and lithification: contribution of oxygenic and facultatively anoxygenic cyanobacteria. . In Fossil Algae, pp. 37–56. Edited by Flügel E.. Berlin: Springer; [CrossRef].
    [Google Scholar]
  16. Leschine S., Paster B. J., Canale-Parola E.. ( 2006;). Free-living saccharolytic spirochetes: the genus Spirochaeta. Prokaryotes 7: 195–210 [CrossRef].
    [Google Scholar]
  17. Magot M., Fardeau M.-L., Arnauld O., Lanau C., Ollivier B., Thomas P., Patel B. K. C.. ( 1997;). Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155: 185–191 [CrossRef] [PubMed].
    [Google Scholar]
  18. Marmur A.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  19. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H. J., Schmid M., Klenk H. P., Tindall B. J., Camacho M.. ( 2014;). Chryseobacterium oleae sp. nov., an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum and C. vrystaatense. Syst Appl Microbiol 37: 342–350 [CrossRef] [PubMed].
    [Google Scholar]
  20. Owen R. J., Lapage S. P.. ( 1976;). The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41: 335–340 [CrossRef] [PubMed].
    [Google Scholar]
  21. Pfennig N., Lippert K. D.. ( 1966;). Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch Microbiol 55: 425–432.
    [Google Scholar]
  22. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E.. ( 1996;). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46: 1088–1092 [CrossRef] [PubMed].
    [Google Scholar]
  23. Ritalahti K. M., Justicia-Leon S. D., Cusick K. D., Ramos-Hernandez N., Rubin M., Dornbush J., Löffler F. E.. ( 2012;). Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 62: 210–216 [CrossRef] [PubMed].
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16.
    [Google Scholar]
  26. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (Mega) software version 4.0. Mol Biol Evol 24: 1596–1599 [CrossRef] [PubMed].
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000506
Loading
/content/journal/ijsem/10.1099/ijsem.0.000506
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error