1887

Abstract

A bacterial strain, designated TSBY 57, was isolated during a study on the phylogenetic diversity of culturable bacteria from alpine permafrost in Tianshan Mountains, China, and was classified by means of a polyphasic taxonomic approach. The novel strain was found to belong to the genus and was distinguished from recognized species of this genus. Strain TSBY 57 grew aerobically, at 0–30 °C, with 0–1.5 % (w/v) NaCl and at pH 6–8.Cells were Gram-stain-negative, non-motile, non-spore-forming rods. Compared with the reference strains, the novel strain was psychrotolerant. The predominant fatty acids were summed feature 3 (consisting of Cω7 and/or Cω6), anteiso-C and iso-C.The sole respiratory quinone was MK-6.Phosphatidylethanolamine was predominant in the polar lipid profile of strain TSBY 57. These chemotaxonomic traits were in good agreement with the characteristics of the genus . On the basis of 16S rRNA gene sequence similarity, strain TSBY 57 was a member of the genus and was closely related to DSM 16811 (99.0 %), DCY78 (98.6 %) and H1 (98.5 %). However, DNA–DNA reassociation values between strain TSBY 57 and DSM 16811, DCY78 and H1 were 39.5 ± 2.6, 37.7 ± 1.0 and 37.3 ± 1.1 %, respectively. The G+C content of the DNA was 34.4 ± 0.2 mol%. Based on data from this polyphasic taxonomic study, strain TSBY 57 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TSBY 57 ( = NRRL B-51307 = CCTCC AB 207182).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000489
2015-11-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/3777.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000489&mimeType=html&fmt=ahah

References

  1. Bai Y. , Yang D. , Wang J. , Xu S. , Wang X. , An L. . ( 2006;). Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 157: 741–751 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barrow G. I. , Feltham R. K. A. . ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.. Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  3. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  5. Fautz E. , Reichenbach H. . ( 1980;). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8: 87–91 [CrossRef].
    [Google Scholar]
  6. Feng H. , Zeng Y. , Huang Y. . ( 2014;). Epilithonimonas xixisoli sp. nov., isolated from wetland bank-side soil. Int J Syst Evol Microbiol 64: 4155–4159 [CrossRef] [PubMed].
    [Google Scholar]
  7. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  8. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . ( 1994;). Methods for General and Molecular Bacteriology., Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  9. Hoang V.-A. , Kim Y.-J. , Ponnuraj S. P. , Nguyen N.-L. , Hwang K. H. , Yang D. C. . ( 2015;). Epilithonimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 65: 122–128 [CrossRef] [PubMed].
    [Google Scholar]
  10. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  11. Jahnke K.-D. . ( 1992;). BASIC computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15: 621–627.[CrossRef]
    [Google Scholar]
  12. Jukes T. H. , Cantor C. R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N. . vol. 3 New York: Academic Press; [CrossRef].
    [Google Scholar]
  13. Kämpfer P. , Kroppenstedt R. M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  14. Keswani J. , Whitman W. B. . ( 2001;). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51: 667–678 [PubMed].[CrossRef]
    [Google Scholar]
  15. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  17. Nakagawa Y. , Yamasato K. . ( 1993;). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139: 1155–1161 [CrossRef] [PubMed].
    [Google Scholar]
  18. O'Sullivan L. A. , Rinna J. , Humphreys G. , Weightman A. J. , Fry J. C. . ( 2006;). Culturable phylogenetic diversity of the phylum ‘Bacteroidetes’ from river epilithon and coastal water and description of novel members of the family Flavobacteriaceae and Epilithonimonas tenax gen. nov., sp. nov. and Persicivirga xylanidelens gen. nov., sp. nov. Int J Syst Evol Microbiol 56: 169–180 [CrossRef] [PubMed].
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  20. Shakéd T. , Hantsis-Zacharov E. , Halpern M. . ( 2010;). Epilithonimonas lactis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 60: 675–679 [CrossRef] [PubMed].
    [Google Scholar]
  21. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  22. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  23. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  24. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  25. Zhao Q. , Bai Y. , Zhang G. , Zhu S. , Sheng H. , Sun Y. , An L. . ( 2011;). Chryseobacterium xinjiangense sp. nov., isolated from alpine permafrost. Int J Syst Evol Microbiol 61: 1397–1401 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000489
Loading
/content/journal/ijsem/10.1099/ijsem.0.000489
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error