1887

Abstract

Two Gram-stain-negative, rod-shaped bacteria, strains 990B6_12ER2A and 994B6_12ER2A, were isolated during microbiological analysis of a mixed manure sample which was used as input material for a German biogas plant. Phylogenetic identification based on nearly full-length 16S rRNA gene sequences placed the isolates into the family within the phylum . Strains 990B6_12ER2A and 994B6_12ER2A shared identical 16S rRNA gene sequences and showed highest 16S rRNA gene sequence similarity to the type strains of (97.3 %) and (96.8 %).

The major cellular fatty acids of strains 990B6_12ER2A and 994B6_12ER2A were iso-C, summed feature 3 (Cω7 and/or Cω6) and iso-C 3-OH.

The polyamine pattern contained predominantly -homospermidine and the quinone system was menaquinone MK-6. Major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified polar lipid not containing an amino residue, a phosphate residue or a sugar moiety. In addition, moderate to minor amounts of several unidentified lipids were detected. The DNA G+C content was 31.7 and 29.0 mol%, for strains 990B6_12ER2A and 994B6_12ER2A, respectively. On the basis of phylogenetic, chemotaxonomic and physiological analysis we propose a novel species of the genus , sp. nov. (type strain 990B6_12ER2A = CIP 110833 = LMG 28501).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000486
2015-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3746.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000486&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P.. ( 1996;). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. Int J Syst Bacteriol 46: 128–148 [CrossRef].
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brosius J., Dull T.J., Sleeter D.D., Noller H.F.. ( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148: 107–127 [CrossRef] [PubMed].
    [Google Scholar]
  5. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  6. Busse H.J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  7. Coloqhoun J.A.. ( 1997;). Discovery of deep-sea actinomycetes. PhD dissertation, Research School of Biosciences, University of Kent, Canterbury, UK.
  8. Dees S.B., Moss C.W., Hollis D.G., Weaver R.E.. ( 1986;). Chemical characterization of Flavobacterium odoratum, Flavobacterium breve, and Flavobacterium-like groups IIe, IIh, and IIf. J Clin Microbiol 23: 267–273 [PubMed].
    [Google Scholar]
  9. Fautz E., Reichenbach H.. ( 1980;). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8: 87–91 [CrossRef].
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Felsenstein J.. ( 2005;). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors), ( 1994;). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  13. Glaeser S.P., Galatis H., Martin K., Kämpfer P.. ( 2013;). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana. Int J Syst Evol Microbiol 63: 3487–3493 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gonzalez J.M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hollis D.G., Daneshvar M.I., Moss C.W.C.N., Baker C.N.. ( 1995;). Phenotypic characteristics, fatty acid composition, and isoprenoid quinone content of CDC group IIg bacteria. J Clin Microbiol 33: 762–764 [PubMed].
    [Google Scholar]
  16. Holmes B., Snell J.J.S., Lapage S.P.. et al., ( 1978;). Revised description, from clinical strains, of Flavobacterium breve (Lustig) Bergey. et al 1923 and proposal of the neotype strain. Int J Syst Bacteriol 28: 201–208 [CrossRef].
    [Google Scholar]
  17. Holmes B., Steigerwalt A.G., Weaver R.E., Brenner D.J.. ( 1986;). Weeksella virosa gen. nov. sp. nov. (formerly group IIf), found in human clinical specimens. Syst Appl Microbiol 8: 185–190 [CrossRef].
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R.M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  19. Kämpfer P., Avesani V., Janssens M., Charlier J., De Baere T., Vaneechoutte M.. ( 2006;). Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter. Int J Syst Evol Microbiol 56: 2323–2329 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim M., Oh H.S., Park S.C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  22. Lane D.J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  24. Meier-Kolthoff J.P., Göker M., Spröer C., Klenk H.P.. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418 [CrossRef] [PubMed].
    [Google Scholar]
  25. Pitcher D.G., Saunders N.A., Owen R.J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151–156 [CrossRef].
    [Google Scholar]
  26. Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35: 7188–7196 [CrossRef] [PubMed].
    [Google Scholar]
  27. Pruesse E., Peplies J., Glöckner F.O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  28. Reichenbach H.. ( 1989;). The order Cytophagales Leadbetter 1974, 99AL. . In Bergey's Manual of Systematic Bacteriologyvol. 3, pp. 2011–2073. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G.. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  29. Reichenbach H.. ( 1992;). Flavobacteriaceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List 41. Int J Syst Bacteriol 42: 327–328 [CrossRef].
    [Google Scholar]
  30. Schauss T., Glaeser S.P., Gütschow A., Dott W., Kämpfer P.. ( 2015;). Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure. PLoS One 10: e0119791 [CrossRef] [PubMed].
    [Google Scholar]
  31. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  32. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tindall B.J. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  35. Tindall B.J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  36. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  37. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.H., Ludwig W., Glöckner F.O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  38. Zhang R.G., Tan X., Zhao X.M., Deng J., Lv J.. ( 2014a;). Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa. Int J Syst Evol Microbiol 64: 1481–1487 [CrossRef] [PubMed].
    [Google Scholar]
  39. Zhang R.G., Tan X., Liang Y., Meng T.Y., Liang H.Z., Lv J.. ( 2014b;). Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 64: 2723–2728 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000486
Loading
/content/journal/ijsem/10.1099/ijsem.0.000486
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error