1887

Abstract

Two Gram-stain-negative, rod-shaped bacteria, strains 990B6_12ER2A and 994B6_12ER2A, were isolated during microbiological analysis of a mixed manure sample which was used as input material for a German biogas plant. Phylogenetic identification based on nearly full-length 16S rRNA gene sequences placed the isolates into the family within the phylum . Strains 990B6_12ER2A and 994B6_12ER2A shared identical 16S rRNA gene sequences and showed highest 16S rRNA gene sequence similarity to the type strains of (97.3 %) and (96.8 %).

The major cellular fatty acids of strains 990B6_12ER2A and 994B6_12ER2A were iso-C, summed feature 3 (Cω7 and/or Cω6) and iso-C 3-OH.

The polyamine pattern contained predominantly -homospermidine and the quinone system was menaquinone MK-6. Major polar lipids were phosphatidylethanolamine, one unidentified aminolipid and one unidentified polar lipid not containing an amino residue, a phosphate residue or a sugar moiety. In addition, moderate to minor amounts of several unidentified lipids were detected. The DNA G+C content was 31.7 and 29.0 mol%, for strains 990B6_12ER2A and 994B6_12ER2A, respectively. On the basis of phylogenetic, chemotaxonomic and physiological analysis we propose a novel species of the genus , sp. nov. (type strain 990B6_12ER2A = CIP 110833 = LMG 28501).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000486
2015-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3746.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000486&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.J. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47 3952 [View Article].
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. ( 1996;). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. Int J Syst Bacteriol 46 128148 [View Article].
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52 10491070 [View Article] [PubMed].
    [Google Scholar]
  4. Brosius J., Dull T.J., Sleeter D.D., Noller H.F. ( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol 148 107127 [View Article] [PubMed].
    [Google Scholar]
  5. Busse H.-J., Auling G. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11 18 [View Article].
    [Google Scholar]
  6. Busse H.J., Bunka S., Hensel A., Lubitz W. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47 698708 [View Article].
    [Google Scholar]
  7. Coloqhoun J.A. ( 1997;). Discovery of deep-sea actinomycetes. PhD dissertation, Research School of Biosciences, University of Kent, Canterbury, UK .
    [Google Scholar]
  8. Dees S.B., Moss C.W., Hollis D.G., Weaver R.E. ( 1986;). Chemical characterization of Flavobacterium odoratum, Flavobacterium breve, and Flavobacterium-like groups IIe, IIh, and IIf. J Clin Microbiol 23 267273 [PubMed].
    [Google Scholar]
  9. Fautz E., Reichenbach H. ( 1980;). A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8 8791 [View Article].
    [Google Scholar]
  10. Felsenstein J. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  11. Felsenstein J. ( 2005;). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA .
    [Google Scholar]
  12. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors), ( 1994). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  13. Glaeser S.P., Galatis H., Martin K., Kämpfer P. ( 2013;). Niabella hirudinis and Niabella drilacis sp. nov., isolated from the medicinal leech Hirudo verbana . Int J Syst Evol Microbiol 63 34873493 [View Article] [PubMed].
    [Google Scholar]
  14. Gonzalez J.M., Saiz-Jimenez C. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4 770773 [View Article] [PubMed].
    [Google Scholar]
  15. Hollis D.G., Daneshvar M.I., Moss C.W.C.N., Baker C.N. ( 1995;). Phenotypic characteristics, fatty acid composition, and isoprenoid quinone content of CDC group IIg bacteria. J Clin Microbiol 33 762764 [PubMed].
    [Google Scholar]
  16. Holmes B., Snell J.J.S., Lapage S.P. et al., ( 1978;). Revised description, from clinical strains, of Flavobacterium breve (Lustig) Bergey. et al 1923 and proposal of the neotype strain. Int J Syst Bacteriol 28 201208 [View Article].
    [Google Scholar]
  17. Holmes B., Steigerwalt A.G., Weaver R.E., Brenner D.J. ( 1986;). Weeksella virosa gen. nov. sp. nov. (formerly group IIf), found in human clinical specimens. Syst Appl Microbiol 8 185190 [View Article].
    [Google Scholar]
  18. Kämpfer P., Kroppenstedt R.M. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42 9891005 [View Article].
    [Google Scholar]
  19. Kämpfer P., Avesani V., Janssens M., Charlier J., De Baere T., Vaneechoutte M. ( 2006;). Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter . Int J Syst Evol Microbiol 56 23232329 [View Article] [PubMed].
    [Google Scholar]
  20. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  21. Kim M., Oh H.S., Park S.C., Chun J. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64 346351 [View Article] [PubMed].
    [Google Scholar]
  22. Lane D.J. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;.
    [Google Scholar]
  23. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32 13631371 [View Article] [PubMed].
    [Google Scholar]
  24. Meier-Kolthoff J.P., Göker M., Spröer C., Klenk H.P. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195 413418 [View Article] [PubMed].
    [Google Scholar]
  25. Pitcher D.G., Saunders N.A., Owen R.J. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8 151156 [View Article].
    [Google Scholar]
  26. Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35 71887196 [View Article] [PubMed].
    [Google Scholar]
  27. Pruesse E., Peplies J., Glöckner F.O. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28 18231829 [View Article] [PubMed].
    [Google Scholar]
  28. Reichenbach H. ( 1989;). The order Cytophagales Leadbetter 1974, 99AL . . In Bergey's Manual of Systematic Bacteriology vol. 3, pp. 20112073. Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  29. Reichenbach H. ( 1992;). Flavobacteriaceae fam. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List 41. Int J Syst Bacteriol 42 327328 [View Article].
    [Google Scholar]
  30. Schauss T., Glaeser S.P., Gütschow A., Dott W., Kämpfer P. ( 2015;). Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure. PLoS One 10 e0119791 [View Article] [PubMed].
    [Google Scholar]
  31. Stamatakis A. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 26882690 [View Article] [PubMed].
    [Google Scholar]
  32. Stolz A., Busse H.-J., Kämpfer P. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57 572576 [View Article] [PubMed].
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed].
    [Google Scholar]
  34. Tindall B.J. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13 128130 [View Article].
    [Google Scholar]
  35. Tindall B.J. ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66 199202 [View Article].
    [Google Scholar]
  36. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44 827831 [View Article].
    [Google Scholar]
  37. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.H., Ludwig W., Glöckner F.O., Rosselló-Móra R. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31 241250 [View Article] [PubMed].
    [Google Scholar]
  38. Zhang R.G., Tan X., Zhao X.M., Deng J., Lv J. ( 2014a;). Moheibacter sediminis gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from sediment, and emended descriptions of Empedobacter brevis, Wautersiella falsenii and Weeksella virosa . Int J Syst Evol Microbiol 64 14811487 [View Article] [PubMed].
    [Google Scholar]
  39. Zhang R.G., Tan X., Liang Y., Meng T.Y., Liang H.Z., Lv J. ( 2014b;). Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol 64 27232728 [View Article] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000486
Loading
/content/journal/ijsem/10.1099/ijsem.0.000486
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error