1887

Abstract

A Gram-stain-negative, motile, aerobic bacterial strain, designated 22DY15, was isolated from a deep-sea sediment sample collected from a hydrothermal vent field located in the East Pacific Rise. The isolate was a short rod with a single flagellum and was positive for catalase and oxidase activities. Q-10 was the predominant respiratory quinone. The major polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphoglycolipid, one aminolipid and three unidentified phospholipids. The principal fatty acid (>70 %) was Cω7. The genomic DNA G+C content was 64.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain 22DY15 represents a distinct lineage within the family . The closest relatives were species of the genera (93.3–96.0 % 16S rRNA gene sequence similarity), (94.0–96.0 %) and (92.0–95.9 %). Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain 22DY15 could be differentiated from its most closely related genera. Therefore, it is proposed that strain 22DY15 represents a novel species in a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is 22DY15 ( = JCM 19489 = DSM 27767 = CGMCC 1.12416 = MCCC 1K00276).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000469
2015-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3645.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000469&mimeType=html&fmt=ahah

References

  1. Arahal D.R., Macián M.C., Garay E., Pujalte M.J.. ( 2005;). Thalassobius mediterraneus gen. nov., sp. nov., and reclassification of Ruegeria gelatinovorans as Thalassobius gelatinovorus comb. nov. Int J Syst Evol Microbiol 55: 2371–2376 [CrossRef] [PubMed].
    [Google Scholar]
  2. Buchan A., González J.M., Moran M.A.. ( 2005;). Overview of the marine roseobacter lineage. Appl Environ Microbiol 71: 5665–5677 [CrossRef] [PubMed].
    [Google Scholar]
  3. Dong X.-Z., Cai M.-Y.. ( 2001;). Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);.
    [Google Scholar]
  4. Farmer J.J. III, Janda J.M., Brenner F.W., Cameron D.N., Birkhead K.M.. ( 2005;). Genus I. Vibrio Pacini 1854, 411AL. . In Bergey's Manual of Systematic Bacteriology, The Proteobacteria, Part B, The Gammaproteobacteria, 2nd edn.. pp. 494–546. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;.
    [Google Scholar]
  5. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  6. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Garrity G.M., Bell J.A., Lilburn T.. ( 2005;). Family I. Rhodobacteraceae fam. nov. . In Bergey's Manual of Systematic Bacteriology, 2C, 2nd edn.., p. 161. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;.
    [Google Scholar]
  8. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  11. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85: 1183–1184 [PubMed].
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner,A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  13. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  14. Martínez-Checa F., Quesada E., Martínez-Cánovas M.J., Llamas I., Béjar V.. ( 2005;). Palleronia marisminoris gen. nov., sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium belonging to the ‘Alphaproteobacteria’, isolated from a saline soil. Int J Syst Evol Microbiol 55: 2525–2530 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mesbah M., Whitman W.B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine+cytosine of DNA. J Chromatogr A 479: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  16. Park S., Yoon J.H.. ( 2013;). Roseovarius sediminilitoris sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63: 1741–1745 [CrossRef] [PubMed].
    [Google Scholar]
  17. Park Y.D., Baik K.S., Yi H., Bae K.S., Chun J.. ( 2005;). Pseudoalteromonas byunsanensis sp. nov., isolated from tidal flat sediment in Korea. Int J Syst Evol Microbiol 55: 2519–2523 [CrossRef] [PubMed].
    [Google Scholar]
  18. Park S., Park J.M., Kang C.H., Yoon J.H.. ( 2015;). [CrossRef] [PubMed] Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three Roseovarius species as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int J Syst Evol Microbiol 65: 2646–2652.
    [Google Scholar]
  19. Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. Nucleic Acids Res 35: 7188–7196 [CrossRef] [PubMed].
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  23. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  24. Tindall B.J., Sikorski J., Smibert R.M., Kreig N.R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, 3rd edn.., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef].
    [Google Scholar]
  25. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M.. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57: 1619–1624 [CrossRef] [PubMed].
    [Google Scholar]
  26. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.H., Ludwig W., Glöckner F.O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241–250 [CrossRef] [PubMed].
    [Google Scholar]
  27. Yoon J.H., Kang S.J., Lee S.Y., Oh T.K.. ( 2007;). Loktanella maricola sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 57: 1799–1802 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000469
Loading
/content/journal/ijsem/10.1099/ijsem.0.000469
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error