1887

Abstract

Short, Gram-negative-staining, rod-shaped bacteria were isolated from crushed bodies of Russian wheat aphid [ (Kurdjumov)] and artificial diets after Russian wheat aphid feeding. Based on multilocus sequence analysis involving the 16S rRNA, , , and genes, these bacterial isolates constitute a novel clade in the genus , and were most closely related to . Representative distinct strains within this clade were used for comparisons with related species of . Phenotypic comparisons using four distinct strains and average nucleotide identity (ANI) measurements using two distinct draft genomes revealed that these strains form a novel species within the genus . The name sp. nov. is proposed, and strain B120 ( = CFBP 8182 = NCCB 100485) was designated the type strain. sp. nov. was not pathogenic to plants. However, virulence to the Russian wheat aphid was observed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000466
2015-10-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3625.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000466&mimeType=html&fmt=ahah

References

  1. Altincicek B., Ter Braak B., Laughton A.M., Udekwu K.I., Gerardo N.M.. ( 2011;). Escherichia coli K-12 pathogenicity in the pea aphid. Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. Dev Comp Immunol 35: 1091–1097 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M.. & other authors ( 2008;). The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bansal R., Mian M.A.R., Michel A.P.. ( 2014;). Microbiome diversity of Aphis glycines with extensive superinfection in native and invasive populations. Environ Microbiol Rep 6: 57–69 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bogdanove A.J., Bauer D.W., Beer S.V.. ( 1998;). Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180: 2244–2247 [PubMed].
    [Google Scholar]
  5. Brady C.L., Venter S.N., Cleenwerck I., Vandemeulebroecke K., De Vos P., Coutinho T.A.. ( 2010a;). Transfer of Pantoea citrea, Pantoea punctata and Pantoea terrea to the genus Tatumella emend. as Tatumella citrea comb. nov., Tatumella punctata comb. nov. and Tatumella terrea comb. nov. and description of Tatumella morbirosei sp. nov. Int J Syst Evol Microbiol 60: 484–494 [CrossRef] [PubMed].
    [Google Scholar]
  6. Brady C.L., Cleenwerck I., Venter S.N., Engelbeen K., De Vos P., Coutinho T.A.. & other authors ( 2010b;). Emended description of the genus Pantoea, description of four species from human clinical samples, Pantoea septica sp. nov., Pantoea eucrina sp. nov., Pantoea brenneri sp. nov. and Pantoea conspicua sp. nov., and transfer of Pectobacterium cypripedii (Hori 1911) Brenner 1973 emend. Hauben et al. 1998 to the genus as Pantoea cypripedii comb. nov. Int J Syst Evol Microbiol 60: 2430–2440 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brady C.L., Cleenwerck I., Denman S., Venter S.N., Rodríguez-Palenzuela P., Coutinho T.A., De Vos P.. & other authors ( 2012;). Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol 62: 1592–1602 [CrossRef] [PubMed].
    [Google Scholar]
  8. Brosius J., Dull T.J., Sleeter D.D., Noller H.F.. ( 1981;). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148: 107–127 [CrossRef] [PubMed].
    [Google Scholar]
  9. Capuzzo C., Firrao G., Mazzon L., Squartini A., Girolami V.. ( 2005;). Candidatus Erwinia dacicola’, a coevolved symbiotic bacterium of the olive fly Bactrocera oleae (Gmelin). Int J Syst Evol Microbiol 55: 1641–1647 [CrossRef] [PubMed].
    [Google Scholar]
  10. Clark E.L., Daniell T.J., Wishart J., Hubbard S.F., Karley A.J.. ( 2012;). How conserved are the bacterial communities associated with aphids? A detailed assessment of the Brevicoryne brassicae (Hemiptera: Aphididae) using 16S rDNA. Environ Entomol 41: 1386–1397 [CrossRef] [PubMed].
    [Google Scholar]
  11. Cooper W.R., Dillwith J.W., Puterka G.J.. ( 2010;). Salivary proteins of Russian wheat aphid (Hemiptera: Aphididae). Environ Entomol 39: 223–231 [CrossRef] [PubMed].
    [Google Scholar]
  12. Demerec M., Fano U.. ( 1945;). Bacteriophage-resistant mutants in Escherichia coli. Genetics 30: 119–136.
    [Google Scholar]
  13. Ellers-Kirk C., Fleischer S.J.. ( 2006;). Development and life table of Acalymma vittatum (Coleoptera: Chrysomelidae), a vector of Erwinia tracheiphila in cucurbits. Environ Entomol 35: 875–880 [CrossRef].
    [Google Scholar]
  14. Estes A.M., Hearn D.J., Bronstein J.L., Pierson E.A.. ( 2009;). The olive fly endosymbiont. “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microbiol 75: 7097–7106 [CrossRef] [PubMed].
    [Google Scholar]
  15. Garcia-Salazar C., Gildow F.E., Fleischer S.J., Cox-Foster D., Lukezic F.L.. ( 2000;). ELISA versus immunolocalization to determine the association of Erwinia tracheiphila in Acalymma vittatum (Coleoptera: Chrysomelidae). Environ Entomol 29: 542–550 [CrossRef].
    [Google Scholar]
  16. Gitaitis R.D., Walcott R.R., Wells M.L., Perez J.C.D., Sanders F.H.. ( 2003;). Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips, Frankliniella fusca. Plant Dis 87: 675–678 [CrossRef].
    [Google Scholar]
  17. Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  18. Harada H., Oyaizu H., Ishikawa H.. ( 1996;). A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora. J Gen Appl Microbiol 42: 17–26 [CrossRef].
    [Google Scholar]
  19. Harada H., Oyaizu H., Kosako Y., Ishikawa H.. ( 1997;). Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43: 349–354 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hauben L., Moore E.R.B., Vauterin L., Steenackers M., Mergaert J., Verdonck L., Swings J.. ( 1998;). Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst Appl Microbiol 21: 384–397 [CrossRef] [PubMed].
    [Google Scholar]
  21. Hildebrand M., Dickler E., Geider K.. ( 2000;). Occurrence of Erwinia amylovora on insects in a fire blight orchard. J Phytopathol 148: 251–256 [CrossRef].
    [Google Scholar]
  22. Holt-Harris J.E., Teague O.. ( 1916;). A new culture medium for the isolation of Bacillus typhosus from stools. J Infect Dis 18: 596–600 [CrossRef].
    [Google Scholar]
  23. Ibarra J., Snelling J., Alexander K., Tisserat N.. ( 2012;). Leaf spotting of Turkish filbert in Colorado caused by Xanthomonas arboricola pv. corylina and Pseudomonas syringae pv. syringae. Plant Health Progress [CrossRef].
    [Google Scholar]
  24. Martinec T., Kocur M.. ( 1964;). A taxonomic study of Erwinia amylovora (Burrill 1882) Winslow et al. 1920. Int Bull Bacteriol Nomencl Taxon 14: 5–14 [CrossRef].
    [Google Scholar]
  25. Miles P.W.. ( 1999;). Aphid saliva. Biol Rev Camb Philos Soc 74: 41–85 [CrossRef].
    [Google Scholar]
  26. Moretti C., Hosni T., Vandemeulebroecke K., Brady C., De Vos P., Buonaurio R., Cleenwerck I.. ( 2011;). Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. Int J Syst Evol Microbiol 61: 2745–2752 [CrossRef] [PubMed].
    [Google Scholar]
  27. Plurad S.B., Goodman R.N., Enns W.R.. ( 1965;). Persistence of Erwinia amylovora in apple aphid (Aphis pomi DeGeer), a probable vector. Nature 205: 206 [CrossRef].
    [Google Scholar]
  28. Popp A., Cleenwerck I., Iversen C., De Vos P., Stephan R.. ( 2010;). Pantoea gaviniae sp. nov. and Pantoea calida sp. nov., isolated from infant formula and an infant formula production environment. Int J Syst Evol Microbiol 60: 2786–2792 [CrossRef] [PubMed].
    [Google Scholar]
  29. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rojas A.M., de Los Rios J.E.G., Fischer-Le Saux M., Jimenez P., Reche P., Bonneau S., Sutra L., Mathieu-Daudé F., McClelland M.. ( 2004;). Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree knots. Int J Syst Evol Microbiol 54: 2217–2222 [CrossRef] [PubMed].
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  32. Skrodenyte-Arbaciauskiene V., Radziute S., Stunzenas V., Bu¯da V.. ( 2012;). Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut. Int J Syst Evol Microbiol 62: 942–948 [CrossRef] [PubMed].
    [Google Scholar]
  33. Smits T.H.M., Rezzonico F., Kamber T., Blom J., Goesmann A., Frey J.E., Duffy B.. ( 2010;). Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23: 384–393 [CrossRef] [PubMed].
    [Google Scholar]
  34. Stavrinides J., McCloskey J.K., Ochman H.. ( 2009;). Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75: 2230–2235 [CrossRef] [PubMed].
    [Google Scholar]
  35. Stavrinides J., No A., Ochman H.. ( 2010;). A single genetic locus in the phytopathogen Pantoea stewartii enables gut colonization and pathogenicity in an insect host. Environ Microbiol 12: 147–155 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  38. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  39. Watanabe K., Kawakita H., Sato M.. ( 1996;). Epiphytic bacterium. Erwinia ananas, commonly isolated from rice plants and brown planthoppers (Nilaparvata lugens) in hopperburn patches. Appl Entomol Zool (Jpn) 31: 459–462.
    [Google Scholar]
  40. Wells M.L., Gitaitis R.D., Sanders F.H.. ( 2002;). Association of tobacco thrips, Frankliniella fusca (Thysanoptera: Thripidae) with two species of bacteria of the genus Pantoea. Ann Entomol Soc Am 95: 719–723 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000466
Loading
/content/journal/ijsem/10.1099/ijsem.0.000466
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error