1887

Abstract

An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2 grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were Cω7, C and Cω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family of the class and was most closely related to the facultative methanotroph KYG (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2 differed from KYG by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2 represents a novel species of the genus , for which we propose the name sp. nov. The type strain is NE2 ( = LMG 28715 = VKM B-2945).

Funding
This study was supported by the:
  • Russian Fund of Basic Research (Award 14-04-93082)
  • The Research Council of Norway (Award 233645/H30)
  • European Science Foundation EUROCORES Programme EuroEEFG (Award MECOMECON)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000465
2015-10-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3618.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000465&mimeType=html&fmt=ahah

References

  1. Auman A.J., Stolyar S., Costello A.M., Lidstrom M.E. ( 2000;). Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66 52595266 [View Article] [PubMed].
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12 133142 [View Article] [PubMed].
    [Google Scholar]
  3. Dedysh S.N. ( 2009;). Exploring methanotroph diversity in acidic northern wetlands: molecular and cultivation-based studies. Microbiology (English translation of Mikrobiologiia) 78 655669 [View Article].
    [Google Scholar]
  4. Dedysh S.N., Khmelenina V.N., Suzina N.E., Trotsenko Y.A., Semrau J.D., Liesack W., Tiedje J.M. ( 2002;). Methylocapsa acidiphila gen. nov. sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52 251261 [PubMed]. [CrossRef]
    [Google Scholar]
  5. Dedysh S.N., Dunfield P.F., Derakshani M., Stubner S., Heyer J., Liesack W. ( 2003;). Differential detection of type II methanotrophic bacteria in acidic peatlands using newly developed 16S rRNA-targeted fluorescent oligonucleotide probes. FEMS Microbiol Ecol 43 299308 [View Article] [PubMed].
    [Google Scholar]
  6. Dedysh S.N., Ricke P., Liesack W. ( 2004;). NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150 13011313 [View Article] [PubMed].
    [Google Scholar]
  7. Dunfield P.F., Khmelenina V.N., Suzina N.E., Trotsenko Y.A., Dedysh S.N. ( 2003;). Methylocella silvestris sp. nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53 12311239 [View Article] [PubMed].
    [Google Scholar]
  8. Dunfield P.F., Belova S.E., Vorob'ev A.V., Cornish S.L., Dedysh S.N. ( 2010;). Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa . Int J Syst Evol Microbiol 60 26592664 [View Article] [PubMed].
    [Google Scholar]
  9. Felsenstein J. ( 1989;). phylip – phylogeny inference package (version 3.2). Cladistics 5 164166.
    [Google Scholar]
  10. Graham D.W., Korich D.G., LeBlanc R.P., Sinclair N.A., Arnold R.G. ( 1992;). Applications of a colorimetric plate assay for soluble methane monooxygenase activity. Appl Environ Microbiol 58 22312236 [PubMed].
    [Google Scholar]
  11. Holmes A.J., Costello A., Lidstrom M.E., Murrell J.C. ( 1995;). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol Lett 132 203208 [View Article] [PubMed].
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R.M. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42 9891005 [View Article].
    [Google Scholar]
  13. Liebner S., Svenning M.M. ( 2013;). Environmental transcription of mmoX by methane-oxidizing Proteobacteria in a subarctic Palsa Peatland. Appl Environ Microbiol 79 701706 [View Article] [PubMed].
    [Google Scholar]
  14. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32 13631371 [View Article] [PubMed].
    [Google Scholar]
  15. McDonald I.R., Murrell J.C. ( 1997;). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63 32183224 [PubMed].
    [Google Scholar]
  16. McDonald I.R., Kenna E.M., Murrell J.C. ( 1995;). Detection of methanotrophic bacteria in environmental samples with the PCR. Appl Environ Microbiol 61 116121 [PubMed].
    [Google Scholar]
  17. Miguez C.B., Bourque D., Sealy J.A., Greer C.W., Groleau D. ( 1997;). Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR). Microb Ecol 33 2131 [View Article] [PubMed].
    [Google Scholar]
  18. Owen R.J., Hill L.R., Lapage S.P. ( 1969;). Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7 503516 [View Article] [PubMed].
    [Google Scholar]
  19. Radajewski S., Webster G., Reay D.S., Morris S.A., Ineson P., Nedwell D.B., Prosser J.I., Murrell J.C. ( 2002;). Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology 148 23312342 [PubMed]. [CrossRef]
    [Google Scholar]
  20. Reynolds E.S. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17 208212 [View Article] [PubMed].
    [Google Scholar]
  21. Seppälä M. ( 1986;). The origin of palsas. Geogr Ann, Ser A 68 141147 [View Article].
    [Google Scholar]
  22. Shigematsu T., Hanada S., Eguchi M., Kamagata Y., Kanagawa T., Kurane R. ( 1999;). Soluble methane monooxygenase gene clusters from trichloroethylene-degrading Methylomonas sp. strains and detection of methanotrophs during in situ bioremediation. Appl Environ Microbiol 65 51985206 [PubMed].
    [Google Scholar]
  23. Tamas I., Smirnova A.V., He Z., Dunfield P.F. ( 2014;). The (d)evolution of methanotrophy in the Beijerinckiaceae-a comparative genomics analysis. ISME J 8 369382 [View Article] [PubMed].
    [Google Scholar]
  24. Vorobev A.V., Baani M., Doronina N.V., Brady A.L., Liesack W., Dunfield P.F., Dedysh S.N. ( 2011;). Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase. Int J Syst Evol Microbiol 61 24562463 [View Article] [PubMed].
    [Google Scholar]
  25. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173 697703 [PubMed].
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000465
Loading
/content/journal/ijsem/10.1099/ijsem.0.000465
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error