1887

Abstract

Strain NHI-1 is a Gram-negative, motile, non-spore-forming bacterium isolated from oil-contaminated soil in South Korea. The strain was able to grow by using gasoline, diesel and kerosene as energy and carbon sources. After incubation for 14 days, cells (1 g l) degraded approximately 58 % of oil present at concentration of 1500 p.p.m. at pH 8 and 28 °C. Strain NHI-1 grew well under aerobic conditions, with optimal growth at pH 7–9 and 28 °C–37 °C but grew poorly in the presence of ≥ 0.5 % NaCl. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the closest relatives of strain NHI-1 were CS-6 (97.96 % sequence similarity), B6 (96.39 %), B8 (95.76 %), ABP-4 (95.72 %) and B4 (95.25 %). DNA–DNA relatedness was 41–53 % between strain NHI-1 and its closest type strains. The major fatty acids present in strain NHI-1 were summed feature 3 (Cω7/Cω6, 44.5 %), summed feature 8 (Cω7/Cω6, 21.5 %) and C (16.2 %), and the predominant polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylserine, diphosphatidylglycerol and uncharacterized aminophospholipids. Strain NHI-1 was distinguishable from other members of genus based on phenotypic, chemotaxonomic and genotypic characteristics. Therefore, strain NHI-1 represents a novel species of the genus for which the name sp. nov. is proposed. The type strain is NHI-1 ( = KEMB 9005-082 =  KACC 18244 = NBRC 110486).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000458
2015-10-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3597.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000458&mimeType=html&fmt=ahah

References

  1. Breznak J.A., Costilow R.N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Chen W.M., Cho N.T., Yang S.H., Arun A.B., Young C.C., Sheu S.Y.. ( 2012;). Aquabacterium limnoticum sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 62: 698–704,. [CrossRef] [PubMed].
    [Google Scholar]
  3. Doetsch R.N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 221–233. Edited by Gerhardt P., Murray R. G. E.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791,. [CrossRef].
    [Google Scholar]
  5. Hall T.A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  6. Kalmbach S., Manz W., Wecke J., Szewzyk U.. ( 1999;). Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49: 769–777,. [CrossRef] [PubMed].
    [Google Scholar]
  7. Kempf M.J., Chen F., Kern R., Venkateswaran K.. ( 2005;). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5: 391–405,. [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., Other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721,. [CrossRef] [PubMed].
    [Google Scholar]
  9. Lin M.C., Jiang S.R., Chou J.H., Arun A.B., Young C.C., Chen W.M.. ( 2009;). Aquabacterium fontiphilum sp. nov., isolated from spring water. Int J Syst Evol Microbiol 59: 681–685,. [CrossRef] [PubMed].
    [Google Scholar]
  10. Mehlen A., Goeldner M., Ried S., Stindl S., Ludwig W., Schleifer K.H.. ( 2004;). Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. Syst Appl Microbiol 27: 689–695 [CrossRef] [PubMed].
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  12. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  13. Nokhal T.-H., Schlegel H.G.. ( 1983;). Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  14. Pham V.H.T., Kim J.. ( 2014;). Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr Microbiol 68: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  15. Pham V.H.T., Kim J., Jeong S.W.. ( 2014;). Enhanced isolation and culture of highly efficient psychrophilic oil-degrading bacteria from oil-contaminated soils in South Korea. J Environ Biol 35: 1145–1149 [PubMed].
    [Google Scholar]
  16. Sambrook J., Fritsch E.F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn NY: Cold Spring Harbor Laboratory Cold Spring Harbor;.
    [Google Scholar]
  17. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  18. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Woods W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  19. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.G.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  21. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  22. Vermeulen J.. ( 2007;). Ripening of PAH and TPH polluted sediments: determination and qualification of bioremediation parameters. PhD Thesis, Wageningen University, Wageningen, The Netherlands..
  23. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., Other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000458
Loading
/content/journal/ijsem/10.1099/ijsem.0.000458
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error