1887

Abstract

An orange-pigmented bacterium, designated strain 13-9-B8, was isolated from a seawater sample collected at Marado, Jeju Island, South Korea. The novel strain was Gram-staining-negative, non-motile, non-gliding, rod-shaped and aerobic. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain clustered with members of the genus of the family in the phylum and was most closely related to the species (95.6 % similarity to the type strain). Strain 13-9-B8 grew optimally at 30 °C, pH 7.0 and with 2 % (w/v) NaCl. Strain 13-9-B8 contained MK-7 as the predominant menquinone and summed feature 3, iso-C and iso-C 3-OH as the major fatty acids. The polar lipids detected in strain 13-9-B8 were phosphatidylethanolamine, one unidentified aminolipid, one unidentified phospholipid and eight unidentified lipids. The DNA G+C content of strain 13-9-B8 was 59.1 mol%. Based on phenotypic, chemotaxonomic and phylogenetic data presented, strain 13-9-B8 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 13-9-B8 ( = DSM 29526 = KCTC 32663).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000435
2015-10-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3433.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000435&mimeType=html&fmt=ahah

References

  1. Bernardet J.-F., Nakagawa Y., Holmes B.. & Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cowan S.T., Steel K.J.. ( 1965;). Manual for the Identification of Medical Bacteria London: Cambridge University Press;.
    [Google Scholar]
  3. Euzéby J.P.. ( 1997;). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47: 590–592 http://www.bacterio.net [CrossRef][PubMed].
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  6. Fitch W.M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  7. Khan S.T., Fukunaga Y., Nakagawa Y., Harayama S.. ( 2007;). Emended descriptions of the genus Lewinella and of Lewinella cohaerens, Lewinella nigricans and Lewinella persica, and description of Lewinella lutea sp. nov. and Lewinella marina sp. nov. Int J Syst Evol Microbiol 57: 2946–2951 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  10. Lee S.D.. ( 2007;). Lewinella agarilytica sp. nov., a novel marine bacterium of the phylum Bacteroidetes, isolated from beach sediment. Int J Syst Evol Microbiol 57: 2814–2818 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lewin R.A.. ( 1970;). New Herpetosiphon species (Flexibacterales). Can J Microbiol 16: 517–520 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lyman J., Fleming R.H.. ( 1940;). Composition of sea water. J Mar Res 3: 134–146.
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W.B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  14. Minnikin D.E., Patel P.V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  15. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  16. Oh H.M., Lee K., Cho J.C.. ( 2009;). Lewinella antarctica sp. nov., a marine bacterium isolated from Antarctic seawater. Int J Syst Evol Microbiol 59: 65–68 [CrossRef] [PubMed].
    [Google Scholar]
  17. Reichenbach H.. ( 1992;). The order Cytophagales. . In The Prokaryotes, 2nd edn.vol. 4, pp. 3631–3675. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer; [CrossRef].
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  19. Sambrook J., Russell D.W.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  20. Sasser M.. ( 2001;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark: MIDI Inc;.
    [Google Scholar]
  21. Sly L.I., Taghavi M., Fegan M.. ( 1998;). Phylogenetic heterogeneity within the genus Herpetosiphon: transfer of the marine species Herpetosiphon cohaerens, Herpetosiphon nigricans and Herpetosiphon persicus to the genus Lewinella gen. nov. in the Flexibacter-Bacteroides-Cytophaga phylum. Int J Syst Bacteriol 48: 731–737 [CrossRef] [PubMed].
    [Google Scholar]
  22. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  24. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  25. Wood P.J., Erfle J.D., Teather R.M.. ( 1988;). Use of complex formation between Congo red and polysaccharides in detection and assay of polysaccharide hydrolases. Methods Enzymol 160: 59–74 [CrossRef].
    [Google Scholar]
  26. Yang S.-H., Kwon K.K., Lee H.-S., Kim S.-J.. ( 2006;). Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 56: 2879–2882 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000435
Loading
/content/journal/ijsem/10.1099/ijsem.0.000435
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error