1887

Abstract

A bacterial strain, designated MSd3, was isolated from a freshwater sample collected from the Hosoda River in Japan. The cells of strain MSd3 were Gram-stain-negative, non-spore-forming, aerobic, non-motile, curved rods forming rings, coils and undulating filaments. The 16S rRNA gene sequence of strain MSd3 showed closest similarity to that of DSM 74 (97.6 % similarity) and similarity to other members of the genus ranged from 90.3 to 95.9 %. Strain MSd3 contained menaquinone 7 as the sole respiratory quinone. The major cellular fatty acids were summed feature 3 (Cω6 and/or Cω7) and Cω5. The polar lipids were phosphatidylethanolamine, three unidentified aminophospholipids and three unidentified polar lipids. The DNA G+C content was 53.3 mol%. The DNA–DNA relatedness between strain MSd3 and DSM 74 was 19 % or 25 % (reciprocal value). From the chemotaxonomic and physiological data and the levels of DNA–DNA relatedness, strain MSd3 should be classified as the representative of a novel species of the genus , for which the name sp. nov. (type strain MSd3 = JCM 30659 = DSM 29961) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000433
2015-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3447.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000433&mimeType=html&fmt=ahah

References

  1. Ahn J.-H., Weon H.-Y., Kim S.-J., Hong S.-B., Seok S.-J., Kwon S.-W.. ( 2014;). Spirosoma oryzae sp. nov., isolated from rice soil and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 64: 3230–3234 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [CrossRef] [PubMed].
    [Google Scholar]
  3. Buck J.D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993.
    [Google Scholar]
  4. Chang X., Jiang F., Wang T., Kan W., Qu Z., Ren L., Fang C., Peng F.. ( 2014;). Spirosoma arcticum sp. nov., isolated from high Arctic glacial till. Int J Syst Evol Microbiol 64: 2233–2237 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  7. Finster K.W., Herbert R.A., Lomstein B.A.. ( 2009;). Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 59: 839–844 [CrossRef] [PubMed].
    [Google Scholar]
  8. Fries J., Pfeiffer S., Kuffner M., Sessitsch A.. ( 2013;). Spirosoma endophyticum sp. nov., isolated from Zn- and Cd-accumulating Salix caprea. Int J Syst Evol Microbiol 63: 4586–4590 [CrossRef] [PubMed].
    [Google Scholar]
  9. Hatayama K.. ( 2014;). Comamonas humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 64: 3976–3982 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hatayama K., Kawai S., Shoun H., Ueda Y., Nakamura A.. ( 2005;). Pseudomonas azotifigens sp. nov., a novel nitrogen-fixing bacterium isolated from a compost pile. Int J Syst Evol Microbiol 55: 1539–1544 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y.S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  13. Larkin J.M., Borrall R.. ( 1984;). Family I. Spirosomaceae Larkin and Borrall 1978, 595AL. . In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 125–132. Edited by Krieg N. R., Holt J. G.. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  14. Migula W.. ( 1894;). Über ein neues System der Bakterien. Arb Bakteriol Inst Karlsruhe 1: 235–238.
    [Google Scholar]
  15. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  16. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics New York: Oxford University Press;.
    [Google Scholar]
  17. Nishijima M., Araki-Sakai M., Sano H.. ( 1997;). Identification of isoprenoid quinones by frit-FAB liquid chromatography-mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28: 113–122 [CrossRef].
    [Google Scholar]
  18. Reasoner D.J., Geldreich E.E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  20. Skerman V.B.D., McGowan V., Sneath P.H.A.. ( 1980;). Approved Lists of Bacterial Names. Int J Syst Bacteriol 30: 225–420 [CrossRef].
    [Google Scholar]
  21. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  22. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526.
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  24. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  25. Wayne L.G., Brenner D.J., Colwell R.R., Grimont P.A.D., Kandler O., Krichevsky M.I., Moore L.H., Moore W.E.C., Murray R.G.E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000433
Loading
/content/journal/ijsem/10.1099/ijsem.0.000433
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error