1887

Abstract

A Gram-stain-positive, facultatively anaerobic and rod-shaped bacterium, designated strain XB, was isolated from growing in Beijing, China. The isolate was identified as a member of the genus based on phenotypic characteristics and phylogenetic inferences. The novel strain was spore-forming, motile, catalase-negative and weakly oxidase-positive. Optimal growth of strain XB occurred at 28°C and pH 7.0–7.5. The major polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unidentified components, including one phospholipid, two aminophospholipids, three glycolipids, one aminolipid and one lipid. The predominant isoprenoid quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was -diaminopimelic acid. The major fatty acid components (>5 %) were anteiso-C (51.2 %), anteiso-C (20.6 %), iso-C (8.3 %) and C (6.7 %). The G+C content of the genomic DNA was 53.3 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain XB fell within the evolutionary distances encompassed by the genus ; its closest phylogenetic neighbour was DCY84 (96.6 %). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain XB is considered to represent a novel species of the genus , for which the name sp. nov., is proposed. The type strain is XB ( = CGMCC 1.15044 = DSM 29851).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000428
2015-10-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3400.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000428&mimeType=html&fmt=ahah

References

  1. Ash C. , Priest F.G. , Collins M.D. . ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baik K.S. , Choe H.N. , Park S.C. , Kim E.M. , Seong C.N. . ( 2011;). Paenibacillus wooponensis sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 61: 2763–2768 [CrossRef] [PubMed].
    [Google Scholar]
  3. Breznak J.A. , Costilow R.N. . ( 2007;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology , 3rd edn.., pp. 309–329. Edited by Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  4. Dahllöf I. , Baillie H. , Kjelleberg S. . ( 2000;). rpoB-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl Environ Microbiol 66: 3376–3380 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ding Y. , Wang J. , Liu Y. , Chen S. . ( 2005;). Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. J Appl Microbiol 99: 1271–1281 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dong X.-Z. , Cai M.-Y. . (editors), ( 2001;). Determination of biochemical properties. . In Manual for the Systematic Identification of General Bacteria, pp. 370–398 Beijing: Science Press; (in Chinese).
    [Google Scholar]
  7. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  9. Glaeser S.P. , Falsen E. , Busse H.J. , Kämpfer P. . ( 2013;). Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 63: 777–782.[CrossRef]
    [Google Scholar]
  10. Jin H.-J. , Lv J. , Chen S.-F. . ( 2011a;). Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica . Int J Syst Evol Microbiol 61: 767–771 [CrossRef] [PubMed].
    [Google Scholar]
  11. Jin H.-J. , Zhou Y.-G. , Liu H.-C. , Chen S.-F. . ( 2011b;). Paenibacillus jilunlii sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Begonia semperflorens . Int J Syst Evol Microbiol 61: 1350–1355 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ko K.S. , Kim Y.-S. , Lee M.Y. , Shin S.Y. , Jung D.S. , Peck K.R. , Song J.-H. . ( 2008;). Paenibacillus konsidensis sp. nov., isolated from a patient. Int J Syst Evol Microbiol 58: 2164–2168 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kong B.H. , Liu Q.F. , Liu M. , Liu Y. , Liu, L. , Li C.L. , Yu R. , Li Y.H . . ( 2013;). Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. . I nt J Syst Evol Microbiol 63: 1037–1044.[CrossRef]
    [Google Scholar]
  15. Lane D.J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  16. Lee J.-C. , Kim C.-J. , Yoon K.-H. . ( 2011;). Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49: 617–621 [CrossRef] [PubMed].
    [Google Scholar]
  17. Liu Y. , Liu L. , Qiu F. , Schumann P. , Shi Y. , Zou Y. , Zhang X. , Song W. . ( 2010;). Paenibacillus hunanensis sp. nov., isolated from rice seeds. Int J Syst Evol Microbiol 60: 1266–1270 [CrossRef] [PubMed].
    [Google Scholar]
  18. Logan N.A. , Berge O. , Bishop A.H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. , other authors . ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59: 2114–2121 [CrossRef] [PubMed].
    [Google Scholar]
  19. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  20. Marmur J. , Doty P. . ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5: 109–118 [CrossRef] [PubMed].
    [Google Scholar]
  21. Montes M.J. , Mercadé E. , Bozal N. , Guinea J. . ( 2004;). Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54: 1521–1526 [CrossRef] [PubMed].
    [Google Scholar]
  22. Moon J.C. , Jung Y.J. , Jung J.H. , Jung H.S. , Cheong Y.R. , Jeon C.O. , Lee K.O. , Lee S.Y. . ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nei M. , Kumar S. . ( 2000;). Molecular Evolution and Phylogenetics New York: Oxford University Press;.
    [Google Scholar]
  24. Osman S. , Satomi M. , Venkateswaran K. . ( 2006;). Paenibacillus pasadenensis sp. nov. and Paenibacillus barengoltzii sp. nov., isolated from a spacecraft assembly facility. Int J Syst Evol Microbiol 56: 1509–1514 [CrossRef] [PubMed].
    [Google Scholar]
  25. Roux V. , Fenner L. , Raoult D. . ( 2008;). Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 58: 682–687 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ruijssenaars H.J. , Hartmans S. . ( 2001;). Plate screening methods for the detection of polysaccharase-producing microorganisms. Appl Microbiol Biotechnol 55: 143–149 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.
    [Google Scholar]
  28. Sasser M. . ( 1990;). Indentification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20: 16.
    [Google Scholar]
  29. Scheldeman P. , Goossens K. , Rodriguez-Diaz M. , Pil A. , Goris J. , Herman L. , De Vos P. , Logan N.A. , Heyndrickx M. . ( 2004;). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54: 885–891 [CrossRef] [PubMed].
    [Google Scholar]
  30. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  31. Shida O. , Takagi H. , Kadowaki K. , Nakamura L.K. , Komagata K. . ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  32. Smibert R.M. , Krieg N.R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  33. Sukweenadhi J. , Kim Y.J. , Lee K.J. , Koh S.C. , Hoang V.A. , Nguyen N.L. , Yang D.C. . ( 2014;). Paenibacillus yonginensis sp. nov., a potential plant growth promoting bacterium isolated from humus soil of Yongin forest. Antonie van Leeuwenhoek 106: 935–945 [CrossRef] [PubMed].
    [Google Scholar]
  34. Takeda M. , Suzuki I. , Koizumi J. . ( 2005;). Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans . Int J Syst Evol Microbiol 55: 737–741 [CrossRef] [PubMed].
    [Google Scholar]
  35. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tang Q.-Y. , Yang N. , Wang J. , Xie Y.-Q. , Ren B. , Zhou Y.-G. , Gu M.-Y. , Mao J. , Li W.-J. , other authors . ( 2011;). Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol 61: 2167–2172 [CrossRef] [PubMed].
    [Google Scholar]
  37. Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  38. Tindall B.J. . ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  39. Tindall B.J. . ( 1990b;). Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  40. Wu X. , Fang H. , Qian C. , Wen Y. , Shen X. , Li O. , Gao H. . ( 2011;). Paenibacillus tianmuensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61: 1133–1137 [CrossRef] [PubMed].
    [Google Scholar]
  41. Zhang L. , Gao J.-S. , Zhang S. , Sheirdil R.A. , Wang X.-C. , Zhang X.-X. . ( 2015;). [CrossRef] [PubMed] Paenibacillus rhizoryzae sp. nov., a novel bacterium isolated from rice rhizosphere. Int J Syst Evol.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000428
Loading
/content/journal/ijsem/10.1099/ijsem.0.000428
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error