1887

Abstract

A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11 stained Gram-positive and were non-motile, straight rods, measuring 3.0–4.5 × 0.8–1.2 μm. The temperature range for growth was 15–37 °C, with optimal growth at 30 °C, the pH range was 6.5–8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H and CO. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C, C, Cω7/iso-C 2-OH and Cω7. The DNA G+C content of strain GluBS11 was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11 is a member of subcluster XIVa within the order . The closest cultured relatives are (93.1 % similarity to the type strain), (93.3 %), (92.4 %) and (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11 is considered to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is GluBS11 ( = LMG 28619 = KCTC 15450 = DSM 29698).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000410
2015-10-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3289.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000410&mimeType=html&fmt=ahah

References

  1. Altschul S.F. , Gish W. , Miller W. , Myers E.W. , Lipman D.J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Andreesen J.R. , Gottschalk G. . ( 1969;). The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum . Arch Mikrobiol 69: 160–170 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bender R. , Andreesen J.R. , Gottschalk G. . ( 1971;). 2-Keto-3-deoxygluconate, an intermediate in the fermentation of gluconate by clostridia. J Bacteriol 107: 570–573.
    [Google Scholar]
  4. Cashion P. , Holder-Franklin M.A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cole J.R. , Wang Q. , Fish J.A. , Chai B. , McGarrell D.M. , Sun Y. , Brown C.T. , Porras-Alfaro A. , Kuske C.R. , Tiedje J.M. . ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42: (D1), D633–D642 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collins M.D. , Lawson P.A. , Willems A. , Cordoba J.J. , Fernandez-Garayzabal J. , Garcia P. , Cai J. , Hippe H. , Farrow J.A. . ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44: 812–826 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cord-Ruwisch R. . ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4: 33–36 [CrossRef].
    [Google Scholar]
  8. Cotta M.A. , Whitehead T.R. , Falsen E. , Moore E. , Lawson P.A. . ( 2009;). Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59: 150–155 [CrossRef] [PubMed].
    [Google Scholar]
  9. Crueger A. , Crueger W. . ( 1990;). Glucose transforming enzymes. . In Microbial Enzyme and Biotechnology , 2nd edn.., pp. 177–226. Edited by Fogarty W. M. , Kelly C. T. . London, New York: Elsevier Applied Science; [CrossRef].
    [Google Scholar]
  10. Eisenberg R.C. , Dobrogosz W.J. . ( 1967;). Gluconate metabolism in Escherichia coli . J Bacteriol 93: 941–949 [PubMed].
    [Google Scholar]
  11. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Gregersen T. . ( 1978;). Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5: 123–127 [CrossRef].
    [Google Scholar]
  13. Junghare M. , Schink B. . ( 2015;). Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 65: 77–84 [PubMed].[CrossRef]
    [Google Scholar]
  14. Kämpfer P. , Kroppenstedt R.M. . ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  15. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kuykendall L.D. , Roy M.A. , O'Neill J.J. , Devine T.E. . ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38: 358–361 [CrossRef].
    [Google Scholar]
  17. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. , other authors . ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32: 1363–1371 [CrossRef] [PubMed].
    [Google Scholar]
  18. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  19. Miller L.T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  20. Pfennig N. . ( 1978;). Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . Int J Syst Bacteriol 28: 283–288 [CrossRef].
    [Google Scholar]
  21. Pfennig N. , Wagener S. . ( 1986;). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4: 303–306 [CrossRef].
    [Google Scholar]
  22. Ramachandran S. , Fontanille P. , Pandey A. , Larroche C. . ( 2006;). Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44: 185–195.
    [Google Scholar]
  23. Röhr M. , Kubicek C.P. , Kominek J. . ( 1983;). Gluconic acid. . In Biotechnology, vol. 3, pp. 455–465. Edited by Rehm H. J. , Reed G. . Weinheim: Verlag Chemie;.
    [Google Scholar]
  24. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  25. Servinsky M.D. , Liu S. , Gerlach E.S. , Germane K.L. , Sund C.J. . ( 2014;). Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum . Microb Cell Fact 13: 139 [CrossRef] [PubMed].
    [Google Scholar]
  26. Sleat R. , Mah R.A. . ( 1985;). Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int J Syst Bacteriol 35: 160–163 [CrossRef].
    [Google Scholar]
  27. Stackebrandt E. , Frederiksen W. , Garrity G.M. , Grimont P.A.D. , Kämpfer P. , Maiden M.C.J. , Nesme X. , Rosselló-Mora R. , Swings J. , other authors . ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047 [CrossRef] [PubMed].
    [Google Scholar]
  28. Stamatakis A. , Hoover P. , Rougemont J. . ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57: 758–771 [CrossRef] [PubMed].
    [Google Scholar]
  29. Suresh K. , Prakash D. , Rastogi N. , Jain R.K. . ( 2007;). Clostridium nitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. Int J Syst Evol Microbiol 57: 1886–1890 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  31. Tschech A. , Pfennig N. . ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137: 163–167 [CrossRef].
    [Google Scholar]
  32. Tsukahara T. , Koyama H. , Okada M. , Ushida K. . ( 2002;). Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132: 2229–2234 [PubMed].
    [Google Scholar]
  33. van Gylswyk N.O. . ( 1980;). Fusobacterium polysaccharolyticum sp. nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbiol 116: 157–163 [PubMed].
    [Google Scholar]
  34. van Gylswyk N.O. , van der Toorn J.J.T.K. . ( 1985;). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int J Syst Bacteriol 35: 323–326 [CrossRef].
    [Google Scholar]
  35. van Gylswyk N.O. , Morris E.J. , Els H.J. . ( 1980;). Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (formerly Fusobacterium polysaccharolyticum). J Gen Microbiol 121: 491–493.
    [Google Scholar]
  36. Varel V.H. , Tanner R.S. , Woese C.R. . ( 1995;). Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol 45: 490–494 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wang Q. , Garrity G.M. , Tiedje J.M. , Cole J.R. . ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73: 5261–5267 [CrossRef] [PubMed].
    [Google Scholar]
  38. Warnick T.A. , Methé B.A. , Leschine S.B. . ( 2002;). Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52: 1155–1160 [CrossRef] [PubMed].
    [Google Scholar]
  39. Widdel F. , Bak F. . ( 1992;). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, vol. 4, , 2nd edn.., pp. 3352–3378. Edited by Balows H. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . New York, Berlin, Heidelberg: Springer; [CrossRef].
    [Google Scholar]
  40. Widdel F. , Kohring G.W. , Mayer F. . ( 1983;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Characterization of the filamentous gliding Desulfonema limicola . Arch Microbiol 134: 286–294 [CrossRef].
    [Google Scholar]
  41. Yarza P. , Yilmaz P. , Pruesse E. , Glöckner F.O. , Ludwig W. , Schleifer K.H. , Whitman W.B. , Euzéby J. , Amann R. , Rosselló-Móra R. . ( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12: 635–645 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000410
Loading
/content/journal/ijsem/10.1099/ijsem.0.000410
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error