1887

Abstract

A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11 stained Gram-positive and were non-motile, straight rods, measuring 3.0–4.5 × 0.8–1.2 μm. The temperature range for growth was 15–37 °C, with optimal growth at 30 °C, the pH range was 6.5–8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H and CO. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C, C, Cω7/iso-C 2-OH and Cω7. The DNA G+C content of strain GluBS11 was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11 is a member of subcluster XIVa within the order . The closest cultured relatives are (93.1 % similarity to the type strain), (93.3 %), (92.4 %) and (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11 is considered to represent a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is GluBS11 ( = LMG 28619 = KCTC 15450 = DSM 29698).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000410
2015-10-01
2020-11-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/10/3289.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000410&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. ( 1990;). Basic local alignment search tool. J Mol Biol 215 403410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Andreesen J.R., Gottschalk G. ( 1969;). The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum . Arch Mikrobiol 69 160170 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bender R., Andreesen J.R., Gottschalk G. ( 1971;). 2-Keto-3-deoxygluconate, an intermediate in the fermentation of gluconate by clostridia. J Bacteriol 107 570573.
    [Google Scholar]
  4. Cashion P., Holder-Franklin M.A., McCully J., Franklin M. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81 461466 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cole J.R., Wang Q., Fish J.A., Chai B., McGarrell D.M., Sun Y., Brown C.T., Porras-Alfaro A., Kuske C.R., Tiedje J.M. ( 2014;). Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42 (D1), D633D642 [CrossRef] [PubMed].
    [Google Scholar]
  6. Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J.A. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44 812826 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cord-Ruwisch R. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4 3336 [CrossRef].
    [Google Scholar]
  8. Cotta M.A., Whitehead T.R., Falsen E., Moore E., Lawson P.A. ( 2009;). Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 59 150155 [CrossRef] [PubMed].
    [Google Scholar]
  9. Crueger A., Crueger W. ( 1990;). Glucose transforming enzymes. . In Microbial Enzyme and Biotechnology , 2nd edn.., pp. 177226. Edited by Fogarty W. M., Kelly C. T. London, New York: Elsevier Applied Science; [CrossRef].
    [Google Scholar]
  10. Eisenberg R.C., Dobrogosz W.J. ( 1967;). Gluconate metabolism in Escherichia coli . J Bacteriol 93 941949 [PubMed].
    [Google Scholar]
  11. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20 406416 [CrossRef].
    [Google Scholar]
  12. Gregersen T. ( 1978;). Rapid method for distinction of gram-negative from gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5 123127 [CrossRef].
    [Google Scholar]
  13. Junghare M., Schink B. ( 2015;). Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant. Int J Syst Evol Microbiol 65 7784 [PubMed]. [CrossRef]
    [Google Scholar]
  14. Kämpfer P., Kroppenstedt R.M. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42 9891005 [CrossRef].
    [Google Scholar]
  15. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38 358361 [CrossRef].
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S., other authors. ( 2004;). arb: a software environment for sequence data. Nucleic Acids Res 32 13631371 [CrossRef] [PubMed].
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39 159167 [CrossRef].
    [Google Scholar]
  19. Miller L.T. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16 584586 [PubMed].
    [Google Scholar]
  20. Pfennig N. ( 1978;). Rhodocyclus purpureus gen. nov. sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . Int J Syst Bacteriol 28 283288 [CrossRef].
    [Google Scholar]
  21. Pfennig N., Wagener S. ( 1986;). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4 303306 [CrossRef].
    [Google Scholar]
  22. Ramachandran S., Fontanille P., Pandey A., Larroche C. ( 2006;). Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44 185195.
    [Google Scholar]
  23. Röhr M., Kubicek C.P., Kominek J. ( 1983;). Gluconic acid. . In Biotechnology, vol. 3, pp. 455465. Edited by Rehm H. J., Reed G. Weinheim: Verlag Chemie;.
    [Google Scholar]
  24. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  25. Servinsky M.D., Liu S., Gerlach E.S., Germane K.L., Sund C.J. ( 2014;). Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum . Microb Cell Fact 13 139 [CrossRef] [PubMed].
    [Google Scholar]
  26. Sleat R., Mah R.A. ( 1985;). Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor. Int J Syst Bacteriol 35 160163 [CrossRef].
    [Google Scholar]
  27. Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A.D., Kämpfer P., Maiden M.C.J., Nesme X., Rosselló-Mora R., Swings J., other authors. ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52 10431047 [CrossRef] [PubMed].
    [Google Scholar]
  28. Stamatakis A., Hoover P., Rougemont J. ( 2008;). A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57 758771 [CrossRef] [PubMed].
    [Google Scholar]
  29. Suresh K., Prakash D., Rastogi N., Jain R.K. ( 2007;). Clostridium nitrophenolicum sp. nov., a novel anaerobic p-nitrophenol-degrading bacterium, isolated from a subsurface soil sample. Int J Syst Evol Microbiol 57 18861890 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tamaoka J., Komagata K. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25 125128 [CrossRef].
    [Google Scholar]
  31. Tschech A., Pfennig N. ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137 163167 [CrossRef].
    [Google Scholar]
  32. Tsukahara T., Koyama H., Okada M., Ushida K. ( 2002;). Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132 22292234 [PubMed].
    [Google Scholar]
  33. van Gylswyk N.O. ( 1980;). Fusobacterium polysaccharolyticum sp. nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch. J Gen Microbiol 116 157163 [PubMed].
    [Google Scholar]
  34. van Gylswyk N.O., van der Toorn J.J.T.K. ( 1985;). Eubacterium uniforme sp. nov. and Eubacterium xylanophilum sp. nov., fiber-digesting bacteria from the rumina of sheep fed corn stover. Int J Syst Bacteriol 35 323326 [CrossRef].
    [Google Scholar]
  35. van Gylswyk N.O., Morris E.J., Els H.J. ( 1980;). Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (formerly Fusobacterium polysaccharolyticum). J Gen Microbiol 121 491493.
    [Google Scholar]
  36. Varel V.H., Tanner R.S., Woese C.R. ( 1995;). Clostridium herbivorans sp. nov., a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol 45 490494 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wang Q., Garrity G.M., Tiedje J.M., Cole J.R. ( 2007;). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73 52615267 [CrossRef] [PubMed].
    [Google Scholar]
  38. Warnick T.A., Methé B.A., Leschine S.B. ( 2002;). Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52 11551160 [CrossRef] [PubMed].
    [Google Scholar]
  39. Widdel F., Bak F. ( 1992;). Gram-negative mesophilic sulfate-reducing bacteria. . In The Prokaryotes, vol. 4, , 2nd edn.., pp. 33523378. Edited by Balows H., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York, Berlin, Heidelberg: Springer; [CrossRef].
    [Google Scholar]
  40. Widdel F., Kohring G.W., Mayer F. ( 1983;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Characterization of the filamentous gliding Desulfonema limicola . Arch Microbiol 134 286294 [CrossRef].
    [Google Scholar]
  41. Yarza P., Yilmaz P., Pruesse E., Glöckner F.O., Ludwig W., Schleifer K.H., Whitman W.B., Euzéby J., Amann R., Rosselló-Móra R. ( 2014;). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12 635645 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000410
Loading
/content/journal/ijsem/10.1099/ijsem.0.000410
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error