1887

Abstract

One bacterial strain, designated 5GH38-5, which was characterized as aerobic, Gram-staining-negative, non-flagellated rods, was isolated from a soil sample from a greenhouse in Sangju region, Republic of Korea. It grew at temperatures of 15–45 °C, pH 5.0–9.0 and NaCl concentrations (w/v) of 0–3.0 %. 16S rRNA gene sequence analysis showed the strain was closely related to J36 (97.3 %), 4M1 (96.8 %), TR6-08 (96.7 %) and JA40 (96.7 %). Its major fatty acids were iso-C, anteiso-C and iso-C. The predominant ubiquinone was Q-8. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 71.1 mol%. The DNA–DNA hybridization value between strain 5GH38-5 and J36 was less than 70 %. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain 5GH38-5 could be clearly distinguished from closely related members of the genus Therefore, the results of this study indicated the existence of a novel species of the genus , for which we propose the name sp. nov., with strain 5GH38-5 ( = KACC 16961 = DSM 28345 = JCM 19948) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000395
2015-09-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3170.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000395&mimeType=html&fmt=ahah

References

  1. Breznak J.A. , Costilow R.N. . ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Chang J.S. , Chou C.L. , Lin G.H. , Sheu S.Y. , Chen W.M. . ( 2005;). Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28: 137–144 [CrossRef] [PubMed].
    [Google Scholar]
  3. Collins M.D. , Goodfellow M. , Minnikin D.E. . ( 1980;). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118: 29–37 [PubMed].
    [Google Scholar]
  4. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  5. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  6. Gonzalez J.M. , Saiz-Jimenez C. . ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  7. Harada R.M. , Campbell S. , Li Q.X. . ( 2006;). Pseudoxanthomonas kalamensis sp. nov., a novel gammaproteobacterium isolated from Johnston Atoll, North Pacific Ocean. Int J Syst Evol Microbiol 56: 1103–1107 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kumari K. , Sharma P. , Tyagi K. , Lal R. . ( 2011;). Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 61: 2107–2111 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  11. Lee D.S. , Ryu S.H. , Hwang H.W. , Kim Y.-J. , Park M. , Lee J.R. , Lee S.-S. , Jeon C.O. . ( 2008;). Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas . Int J Syst Evol Microbiol 58: 2235–2240 [CrossRef] [PubMed].
    [Google Scholar]
  12. Li D. , Pang H. , Sun L. , Fan J. , Li Y. , Zhang J. . ( 2014;). Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline-alkali soil. Int J Syst Evol Microbiol 64: 799–804 [CrossRef] [PubMed].
    [Google Scholar]
  13. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  14. Pruesse E. , Peplies J. , Glöckner F.O. . ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  15. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  16. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101. Newark, DE: MIDI Inc;.
    [Google Scholar]
  17. Seldin L. , Dubnau D. . ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35: 151–154 [CrossRef].
    [Google Scholar]
  18. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  19. Thierry S. , Macarie H. , Iizuka T. , Geissdörfer W. , Assih E.A. , Spanevello M. , Verhe F. , Thomas P. , Fudou R. , other authors . ( 2004;). Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol 54: 2245–2255 [CrossRef] [PubMed].
    [Google Scholar]
  20. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  21. Weon H.Y. , Kim B.Y. , Kim J.S. , Lee S.Y. , Cho Y.H. , Go S.J. , Hong S.B. , Im W.T. , Kwon S.W. . ( 2006;). Pseudoxanthomonas suwonensis sp. nov., isolated from cotton waste composts. Int J Syst Evol Microbiol 56: 659–662 [CrossRef] [PubMed].
    [Google Scholar]
  22. Yang D.C. , Im W.T. , Kim M.K. , Lee S.T. . ( 2005;). Pseudoxanthomonas koreensis sp. nov. and Pseudoxanthomonas daejeonensis sp. nov. Int J Syst Evol Microbiol 55: 787–791 [CrossRef] [PubMed].
    [Google Scholar]
  23. Zhang L. , Wei L. , Zhu L. , Li C. , Wang Y. , Shen X. . ( 2014;). Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum . Antonie van Leeuwenhoek 105: 653–661 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000395
Loading
/content/journal/ijsem/10.1099/ijsem.0.000395
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error