1887

Abstract

One bacterial strain, designated 5GH38-5, which was characterized as aerobic, Gram-staining-negative, non-flagellated rods, was isolated from a soil sample from a greenhouse in Sangju region, Republic of Korea. It grew at temperatures of 15–45 °C, pH 5.0–9.0 and NaCl concentrations (w/v) of 0–3.0 %. 16S rRNA gene sequence analysis showed the strain was closely related to J36 (97.3 %), 4M1 (96.8 %), TR6-08 (96.7 %) and JA40 (96.7 %). Its major fatty acids were iso-C, anteiso-C and iso-C. The predominant ubiquinone was Q-8. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 71.1 mol%. The DNA–DNA hybridization value between strain 5GH38-5 and J36 was less than 70 %. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain 5GH38-5 could be clearly distinguished from closely related members of the genus Therefore, the results of this study indicated the existence of a novel species of the genus , for which we propose the name sp. nov., with strain 5GH38-5 ( = KACC 16961 = DSM 28345 = JCM 19948) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000395
2015-09-01
2021-03-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3170.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000395&mimeType=html&fmt=ahah

References

  1. Breznak J.A., Costilow R.N. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  2. Chang J.S., Chou C.L., Lin G.H., Sheu S.Y., Chen W.M. ( 2005;). Pseudoxanthomonas kaohsiungensis, sp. nov., a novel bacterium isolated from oil-polluted site produces extracellular surface activity. Syst Appl Microbiol 28 137144 [CrossRef] [PubMed] .
    [Google Scholar]
  3. Collins M.D., Goodfellow M., Minnikin D.E. ( 1980;). Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118 2937 [PubMed].
    [Google Scholar]
  4. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [CrossRef] [PubMed] .
    [Google Scholar]
  5. Fitch W.M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [CrossRef].
    [Google Scholar]
  6. Gonzalez J.M., Saiz-Jimenez C. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4 770773 [CrossRef] [PubMed] .
    [Google Scholar]
  7. Harada R.M., Campbell S., Li Q.X. ( 2006;). Pseudoxanthomonas kalamensis sp. nov., a novel gammaproteobacterium isolated from Johnston Atoll, North Pacific Ocean. Int J Syst Evol Microbiol 56 11031107 [CrossRef] [PubMed] .
    [Google Scholar]
  8. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef] [PubMed] .
    [Google Scholar]
  9. Kumari K., Sharma P., Tyagi K., Lal R. ( 2011;). Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. Int J Syst Evol Microbiol 61 21072111 [CrossRef] [PubMed] .
    [Google Scholar]
  10. Lányí B. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19 167. [CrossRef]
    [Google Scholar]
  11. Lee D.S., Ryu S.H., Hwang H.W., Kim Y.-J., Park M., Lee J.R., Lee S.-S., Jeon C.O. ( 2008;). Pseudoxanthomonas sacheonensis sp. nov., isolated from BTEX-contaminated soil in Korea, transfer of Stenotrophomonas dokdonensis Yoon et al. 2006 to the genus Pseudoxanthomonas as Pseudoxanthomonas dokdonensis comb. nov. and emended description of the genus Pseudoxanthomonas . Int J Syst Evol Microbiol 58 22352240 [CrossRef] [PubMed] .
    [Google Scholar]
  12. Li D., Pang H., Sun L., Fan J., Li Y., Zhang J. ( 2014;). Pseudoxanthomonas wuyuanensis sp. nov., isolated from saline-alkali soil. Int J Syst Evol Microbiol 64 799804 [CrossRef] [PubMed] .
    [Google Scholar]
  13. Minnikin D.E., O'Donnell A.G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [CrossRef].
    [Google Scholar]
  14. Pruesse E., Peplies J., Glöckner F.O. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28 18231829 [CrossRef] [PubMed] .
    [Google Scholar]
  15. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  16. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101. Newark, DE: MIDI Inc;.
    [Google Scholar]
  17. Seldin L., Dubnau D. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35 151154 [CrossRef].
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [CrossRef] [PubMed] .
    [Google Scholar]
  19. Thierry S., Macarie H., Iizuka T., Geissdörfer W., Assih E.A., Spanevello M., Verhe F., Thomas P., Fudou R., other authors. ( 2004;). Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol 54 22452255 [CrossRef] [PubMed] .
    [Google Scholar]
  20. Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173 697703 [PubMed].
    [Google Scholar]
  21. Weon H.Y., Kim B.Y., Kim J.S., Lee S.Y., Cho Y.H., Go S.J., Hong S.B., Im W.T., Kwon S.W. ( 2006;). Pseudoxanthomonas suwonensis sp. nov., isolated from cotton waste composts. Int J Syst Evol Microbiol 56 659662 [CrossRef] [PubMed] .
    [Google Scholar]
  22. Yang D.C., Im W.T., Kim M.K., Lee S.T. ( 2005;). Pseudoxanthomonas koreensis sp. nov. and Pseudoxanthomonas daejeonensis sp. nov. Int J Syst Evol Microbiol 55 787791 [CrossRef] [PubMed] .
    [Google Scholar]
  23. Zhang L., Wei L., Zhu L., Li C., Wang Y., Shen X. ( 2014;). Pseudoxanthomonas gei sp. nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum . Antonie van Leeuwenhoek 105 653661 [CrossRef] [PubMed] .
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000395
Loading
/content/journal/ijsem/10.1099/ijsem.0.000395
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error