1887

Abstract

A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H, was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002 m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H grew at temperatures of 25–45 °C (optimum 30 °C), pH 6.7–8.1 (optimum 7.5) and in a salinity of 5–60 g l NaCl (optimum 30 g l). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H and CO. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C, Cω7, Cω7 DMA and C. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H was affiliated to cluster XI of the order phylum The closest phylogenetic relative of Ra1766H was (94.2 % 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H ( = DSM 27501 = JCM 19377) is proposed to be the type strain of a novel species of a novel genus, named .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000386
2015-09-01
2024-09-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/9/3097.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000386&mimeType=html&fmt=ahah

References

  1. Alain K., Pignet P., Zbinden M., Quillevere M., Duchiron F., Donval J.P., Lesongeur F., Raguenes G., Crassous P., other authors. ( 2002;). Caminicella sporogenes gen. nov., sp. nov., a novel thermophilic spore-forming bacterium isolated from an East-Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52 16211628 [View Article] [PubMed] .
    [Google Scholar]
  2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. ( 1990;). Basic local alignment search tool. J Mol Biol 215 403410 [View Article] [PubMed] .
    [Google Scholar]
  3. Balch W.E., Fox G.E., Magrum L.J., Woese C.R., Wolfe R.S. ( 1979;). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43 260296 [PubMed].
    [Google Scholar]
  4. Brisbarre N., Fardeau M-L., Cueff V., Cayol J-L., Barbier G., Cilia V., Ravot G., Thomas P., Garcia J-L., Ollivier B. ( 2003;). Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int J Syst Evol Microbiol 53 10431049 [View Article] [PubMed] .
    [Google Scholar]
  5. Cashion P., Holder-Franklin M.A., McCully J., Franklin M. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81 461466 [View Article] [PubMed] .
    [Google Scholar]
  6. Collins M.D., Lawson P.A., Willems A., Cordoba J.J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J.A.E. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44 812826 [View Article] [PubMed] .
    [Google Scholar]
  7. Cord-Ruwisch R. ( 1985;). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4 3336 [View Article].
    [Google Scholar]
  8. Dick G.J., Tebo B.M. ( 2010;). Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ Microbiol 12 13341347 [View Article] [PubMed] .
    [Google Scholar]
  9. Dick G.J., Lee Y.E., Tebo B.M. ( 2006;). Manganese(II)-oxidizing Bacillus spores in Guaymas Basin hydrothermal sediments and plumes. Appl Environ Microbiol 72 31843190 [View Article] [PubMed] .
    [Google Scholar]
  10. Fardeau M-L., Ollivier B., Patel B.K.C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J-L. ( 1997;). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47 10131019 [View Article] [PubMed] .
    [Google Scholar]
  11. Fardeau M-L., Magot M., Patel B.K.C., Thomas P., Garcia J-L., Ollivier B. ( 2000;). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50 21412149 [View Article] [PubMed] .
    [Google Scholar]
  12. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  13. Gundersen J.K., Jorgensen B.B., Larsen E., Jannasch H.W. ( 1992;). Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360 454456 [View Article].
    [Google Scholar]
  14. Hall T.A. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41 9598.
    [Google Scholar]
  15. Hungate R.E. ( 1969;). A roll-tube method for the cultivation of strict anaerobes. Methods Microbiol 3B 117132. [CrossRef]
    [Google Scholar]
  16. Klouche N., Fardeau M-L., Lascourrèges J-F., Cayol J-L., Hacene H., Thomas P., Magot M. ( 2007;). Geosporobacter subterraneus gen. nov., sp. nov., a spore-forming bacterium isolated from a deep subsurface aquifer. Int J Syst Evol Microbiol 57 17571761 [View Article] [PubMed] .
    [Google Scholar]
  17. Kuykendall L.D., Roy M.A., O'Neill J.J., Devine T.E. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38 358361 [View Article].
    [Google Scholar]
  18. Lakhal R., Pradel N., Postec A., Hamdi M., Ollivier B., Godfroy A., Fardeau M-L. ( 2013;). Vallitalea guaymasensis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 63 30193023 [View Article] [PubMed] .
    [Google Scholar]
  19. Lupton J.E. ( 1979;). Helium-3 in the Guaymas Basin: Evidence for injection of mantle volatiles in the Gulf of California.. J Geophys Res: Solid Earth 84 (B13), 74467452 [View Article].
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W.B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39 159167. [CrossRef]
    [Google Scholar]
  21. Miller L.T. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16 584586 [PubMed].
    [Google Scholar]
  22. Miller T.L., Wolin M.J. ( 1974;). A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27 985987 [PubMed].
    [Google Scholar]
  23. Nei M., Kumar S. ( 2000). Molecular Evolution and Phylogenetics., New York: Oxford University Press;.
    [Google Scholar]
  24. Ogg C.D., Patel B.K.C. ( 2009;). Thermotalea metallivorans gen. nov., sp. nov., a thermophilic, anaerobic bacterium from the Great Artesian Basin of Australia aquifer. Int J Syst Evol Microbiol 59 964971 [View Article] [PubMed] .
    [Google Scholar]
  25. Pearson A., Seewald J.S., Eglinton T.I. ( 2005;). Bacterial incorporation of relict carbon in the hydrothermal environment of Guaymas Basin. Geochim Cosmochim Acta 69 54775486 [View Article].
    [Google Scholar]
  26. Rzhetsky A., Nei M. ( 1992;). A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9 945967.
    [Google Scholar]
  27. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  28. Simoneit B.R.T. ( 1985;). Hydrothermal petroleum-genesis, migration and deposition in Guaymas Basin, Gulf of California. Can J Earth Sci 22 19191929 [View Article].
    [Google Scholar]
  29. Tamura K., Nei M., Kumar S. ( 2004;). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101 1103011035 [View Article] [PubMed] .
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0.. Mol Biol Evol 30 27252729 [View Article] [PubMed] .
    [Google Scholar]
  31. Teske A., Hinrichs K.U., Edgcomb V., de Vera Gomez A., Kysela D., Sylva S.P., Sogin M.L., Jannasch H.W. ( 2002;). Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68 19942007 [View Article] [PubMed] .
    [Google Scholar]
  32. Thabet O.B., Fardeau M-L., Joulian C., Thomas P., Hamdi M., Garcia J-L., Ollivier B. ( 2004;). Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. Anaerobe 10 185190 [View Article] [PubMed] .
    [Google Scholar]
  33. Widdel F., Pfennig N. ( 1981;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov.. Arch Microbiol 129 395400 [View Article] [PubMed] .
    [Google Scholar]
  34. Williams D.L., Becker K., Lawver L.A., von Herzen R.P. ( 1979;). Heat flow at the spreading centers of the Guaymas Basin, Gulf of California. J Geophys Res:Solid Earth (1978–2012) 84 (B12), 67576769 [View Article].
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000386
Loading
/content/journal/ijsem/10.1099/ijsem.0.000386
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error