1887

Abstract

Four alkaligenous, moderately halotolerant strains, designated ge09, ge10, ge14 and ge15, were isolated from the internal tissue of ginseng root and their taxonomic positions were investigated by using a polyphasic approach. Cells of the four strains were Gram-positive-staining, non-motile, short rods. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains ge09 and ge10 formed one cluster and strains ge14 and ge15 formed another separate cluster within the genus . 16S rRNA gene sequence similarities with type strains of other species were less than 97 %. Levels of DNA–DNA relatedness among the four strains showed that strains ge09 and ge10 and strains ge14 and ge15 belonged to two separate species; the mean level of DNA–DNA relatedness between ge10 and ge14 was only 28.7 %. Their phenotypic and physiological properties supported the view that the two strains represent two different novel species of the genus . The DNA G+C contents of strains ge10 and ge14 were 49.9 and 49.6 mol%, respectively. Strains ge10 and ge14 showed the peptidoglycan type A4 -Lys–-Glu. The lipids present in strains ge10 and ge14 were diphosphatidylglycerol, phosphatidylglycerol, a minor amount of phosphatidylcholine and two unknown phospholipids. Their predominant respiratory quinone was MK-7. The fatty acid profiles of the four novel strains contained large quantities of branched and saturated fatty acids. The predominant cellular fatty acids were iso-C (42.5 %), anteiso-C (22.2 %), anteiso-C (7.3 %) and C 7 alcohol (5.7 %) in ge10 and iso-C (50.7 %) and anteiso-C (20.1 %) in ge14. On the basis of their phenotypic properties and phylogenetic distinctiveness, two novel species of the genus are proposed, sp. nov. (type strain ge10 =DSM 19037 =CGMCC 1.6762) and sp. nov. (type strain ge14 =DSM 19038 =CGMCC 1.6763).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65861-0
2009-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/729.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65861-0&mimeType=html&fmt=ahah

References

  1. Collins, M. D.(1985). Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  2. Combet-Blanc, Y., Ollivier, B., Streicher, C., Patel, B. K., Dwivedi, P. P., Pot, B., Prensier, G. & Garcia, J. L.(1995).Bacillus thermoamylovorans sp. nov., a moderately thermophilic and amylolytic bacterium. Int J Syst Bacteriol 45, 9–16.[CrossRef] [Google Scholar]
  3. Dong, X., Xin, Y., Jian, W., Liu, X. & Ling, D.(2000).Bifidobacterium thermacidophilum sp. nov., isolated from an anerobic digester. Int J Syst Evol Microbiol 50, 119–125.[CrossRef] [Google Scholar]
  4. Eck, R. V. & Dayhoff, M. O.(1966).Atlas of Protein Sequence and Structure. Silver Springs, MD: National Biomedical Research Foundation.
  5. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  6. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  7. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  8. Gordon, R. E., Haynes, W. C. & Pang, C. H.-N.(1973).The Genus Bacillus. US Department of Agriculture Handbook no. 427. Washington, DC: Agricultural Research Service.
  9. Hucker, G. J. & Conn, H. J.(1923). Method of Gram staining. N Y State Agric Exp Stn Tech Bull 93, 3–37. [Google Scholar]
  10. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  11. Ko, K. S., Oh, W. S., Lee, M. Y., Lee, J. H., Lee, H., Peck, K. R., Lee, N. Y. & Song, J.-H.(2006).Bacillus infantis sp. nov. and Bacillus idriensis sp. nov., isolated from a patient with neonatal sepsis. Int J Syst Evol Microbiol 56, 2541–2544.[CrossRef] [Google Scholar]
  12. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  13. Logan, N. A., Lebbe, L., Hoste, B., Goris, J., Forsyth, G., Heyndrickx, M., Murray, B. L., Syme, N., Wynn-Williams, D. D. & De Vos, P.(2000). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50, 1741–1753. [Google Scholar]
  14. MacKenzie, S. L.(1987). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160. [Google Scholar]
  15. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  16. Marmur, J. & Doty, P.(1962). Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  17. Muntyan, M. S., Tourova, T. P., Lysenko, A. M., Kolganova, T. V., Fritze, D. & Skulachev, V. P.(2002). Molecular identification of alkaliphilic and halotolerant strain Bacillus sp. FTU as Bacillus pseudofirmus FTU. Extremophiles 6, 195–199.[CrossRef] [Google Scholar]
  18. Nagel, M. & Andreesen, J. R.(1991).Bacillus niacini sp. nov., a nicotinate-metabolizing mesophile isolated from soil. Int J Syst Bacteriol 41, 134–139.[CrossRef] [Google Scholar]
  19. Nielsen, P., Fritze, D. & Priest, F. G.(1995). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef] [Google Scholar]
  20. Nogi, Y., Takami, H. & Horikoshi, K.(2005). Characterization of alkaliphilic Bacillus strains used in industry: proposal of five novel species. Int J Syst Evol Microbiol 55, 2309–2315.[CrossRef] [Google Scholar]
  21. Pollock, J., Weber, K. A., Lack, J., Achenbach, L. A., Mormile, M. R. & Coates, J. D.(2007). Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Appl Microbiol Biotechnol 77, 927–934.[CrossRef] [Google Scholar]
  22. Qiu, F., Huang, Y., Sun, L., Zhang, X., Liu, Z. & Song, W.(2007).Leifsonia ginsengi sp. nov., isolated from ginseng root. Int J Syst Evol Microbiol 57, 405–408.[CrossRef] [Google Scholar]
  23. Rzhetsky, A. & Nei, M.(1992). A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9, 945–967. [Google Scholar]
  24. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  25. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  26. Schleifer, K. H.(1985). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156. [Google Scholar]
  27. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1597.[CrossRef] [Google Scholar]
  28. Ten, L. N., Baek, S.-H., Im, W.-T., Larina, L. L., Lee, J.-S., Oh, H.-M. & Lee, S.-T.(2007).Bacillus pocheonensis sp. nov., a moderately halotolerant, aerobic bacterium isolated from soil of a ginseng field. Int J Syst Evol Microbiol 57, 2532–2537.[CrossRef] [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  30. Tiago, I., Pires, C., Mendes, V., Morais, P. V., da Costa, M. S. & Veríssimo, A.(2006).Bacillus foraminis sp. nov., isolated from a non-saline alkaline groundwater. Int J Syst Evol Microbiol 56, 2571–2574.[CrossRef] [Google Scholar]
  31. Tindall, B. J.(1990). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  32. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  33. Wu, C., Lu, X., Qin, M., Wang, Y. & Ruan, J.(1989). Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16, 176–178. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65861-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65861-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 729 - 734

Comparison of carbon source utilization among strains ge09, ge10 , ge14 and ge15.

Fatty acid profiles of strains ge09, ge10 , ge14 and ge15 measured by GC.

[PDF file of Supplementary Tables S1 and S2](118 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error