A yellow- to orange-pigmented, Gram-negative, rod-shaped, motile and non-spore-forming bacterium, strain FSW06-204d, was isolated from subsurface water of the acidic bog lake, Lake Grosse Fuchskuhle (Brandenburg, Germany). Optimum growth of this strain occurred over a pH range from 5.5 to 6.0 and the growth rate strongly decreased at pH values above 6.5. In addition, the strain exhibited a low tolerance towards NaCl and grew only at a NaCl concentration of up to 0.5 %. 16S rRNA gene sequence analysis of strain FSW06-204d showed the highest sequence similarity to W-51 (96.7 %) and formed a distinct cluster with DSM 19370 (96.4 %) within the genus . Strain FSW06-204d shared a 21 bp signature gap with the latter species, a feature that is absent in all other members of the family . DNA–DNA hybridization of strain FSW06-204d and DSM 19370 showed a low relatedness value of 24 % (reciprocal: 39 %). The major respiratory quinone was ubiquinone Q-10 (91 %) and the predominant fatty acid was C 7 (43.3 %). Two characteristic 2-hydroxy fatty acids, C 2-OH (8.1 %) and C 2-OH (6.5 %), were abundant. Polar lipids consisted mainly of phosphatidyldimethylethanolamine and phosphatidylethanolamine; however, only moderate amounts of sphingoglycolipids were present and phosphatidylcholine was lacking. Characterization by 16S rRNA gene sequence, physiological features, pigment analysis and polyamine, ubiquinone, polar lipid and fatty acid contents revealed that strain FSW06-204d represents a novel species of the genus within the class . The name sp. nov. is proposed for this acidophilic and salt-sensitive species with the type strain FSW06-204d (=DSM 19966=CCM 7496=CCUG 55538).


Article metrics loading...

Loading full text...

Full text loading...



  1. Addison, S. L., Foote, S. M., Reid, N. M. & Lloyd-Jones, G.(2007).Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int J Syst Evol Microbiol 57, 2467–2471.[CrossRef] [Google Scholar]
  2. Airs, R. L., Atkinson, J. E. & Keely, B. J.(2001). Development and application of a high resolution liquid chromatographic method for the analysis of complex pigment distributions. J Chromatogr A 917, 167–177.[CrossRef] [Google Scholar]
  3. Allgaier, M. & Grossart, H.-P.(2006). Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45, 115–128.[CrossRef] [Google Scholar]
  4. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J.(1996). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef] [Google Scholar]
  5. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S.(1979). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296. [Google Scholar]
  6. Balkwill, D. L., Drake, G. R., Reeves, R. H., Frederickson, J. K., White, D. C., Ringelberg, D. B., Chandler, D. P., Romine, M. F., Kennedy, D. W. & Spadoni, C. M.(1997). Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47, 191–201.[CrossRef] [Google Scholar]
  7. Bally, R., Givaudan, A., Bernillon, J., Heulin, T., Balandreau, J. & Bardin, R.(1990). Numerical taxonomic study of three N2-fixing yellow-pigmented bacteria related to Pseudomonas paucimobilis. Can J Microbiol 36, 850–855.[CrossRef] [Google Scholar]
  8. Bartscht, K., Cypionka, H. & Overmann, J.(1999). Evaluation of cell activity and of methods for the cultivation of bacteria from a natural lake community. FEMS Microbiol Ecol 28, 249–259.[CrossRef] [Google Scholar]
  9. Brosius, J., Dull, T., Sleeter, D. & Noller, H.(1981). Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148, 107–127.[CrossRef] [Google Scholar]
  10. Burkert, U., Warnecke, F., Babenzien, D., Zwirnmann, E. & Pernthaler, J.(2003). Members of a readily enriched betaproteobacterial clade are common in surface waters of a humic lake. Appl Environ Microbiol 69, 6550–6559.[CrossRef] [Google Scholar]
  11. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  12. Busse, H.-J., Kämpfer, P. & Denner, E. B. M.(1999). Chemotaxonomic characterization of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef] [Google Scholar]
  13. Busse, H.-J., Denner, E. B. M., Buczolits, S., Salkinoja-Salonen, M., Bennasar, A. & Kämpfer, P.(2003).Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 53, 1253–1260.[CrossRef] [Google Scholar]
  14. Fujii, K., Kikuchi, S., Satomi, M., Ushio-Sata, N. & Morita, N.(2003).Novosphingobium tardaugens sp. nov., an oestradiol-degrading bacterium isolated from activated sludge of a sewage treatment plant in Tokyo. Int J Syst Evol Microbiol 53, 47–52.[CrossRef] [Google Scholar]
  15. Gich, F. & Overmann, J.(2006).Sandarakinorhabdus limnophila gen. nov., sp. nov., a novel bacteriochlorophyll a-containing, obligately aerobic bacterium isolated from freshwater lakes. Int J Syst Evol Microbiol 56, 847–854.[CrossRef] [Google Scholar]
  16. Glöckner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A. & Amann, R.(2000). Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66, 5053–5065.[CrossRef] [Google Scholar]
  17. Jaspers, E., Nauhaus, K., Cypionka, H. & Overmann, J.(2001). Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol Ecol 36, 153–164.[CrossRef] [Google Scholar]
  18. Jenkins, C. L., Andrewes, A. G., McQuade, T. J. & Starr, M. D.(1979). The pigment of Pseudomonas paucimobilis is a carotenoid (nostoxanthin), rather than a brominated aryl-polyene (xanthomonadin). Curr Microbiol 3, 1–4.[CrossRef] [Google Scholar]
  19. Kämpfer, P. & Kroppenstedt, R. M.(1996). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef] [Google Scholar]
  20. Kämpfer, P., Steiof, M. & Dott, W.(1991). Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21, 227–251.[CrossRef] [Google Scholar]
  21. Kämpfer, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J. & Neef, A.(2002).Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25, 37–45.[CrossRef] [Google Scholar]
  22. Kim, M. K., Schubert, K., Im, W.-T., Kim, K.-H., Lee, S.-T. & Overmann, J.(2007).Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 57, 1527–1534.[CrossRef] [Google Scholar]
  23. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  24. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  25. Liu, Z.-P., Wang, B.-J., Liu, Y.-H. & Liu, S.-J.(2005).Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55, 1229–1232.[CrossRef] [Google Scholar]
  26. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  27. Neef, A., Witzenberger, R. & Kämpfer, P.(1999). Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J Ind Microbiol Biotechnol 23, 261–267.[CrossRef] [Google Scholar]
  28. Pitcher, D. G., Saunders, N. A. & Owen, R. J.(1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef] [Google Scholar]
  29. Rainey, F. A., Ward-Rainey, N., Gliesche, C. G. & Stackebrandt, E.(1998). Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium. Int J Syst Bacteriol 48, 635–639.[CrossRef] [Google Scholar]
  30. Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B. & Kim, S.-J.(2004).Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54, 1483–1487.[CrossRef] [Google Scholar]
  31. Stolz, A., Busse, H.-J. & Kämpfer, P.(2007).Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57, 572–576.[CrossRef] [Google Scholar]
  32. Suzuki, S. & Hiraishi, A.(2007).Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 53, 221–228.[CrossRef] [Google Scholar]
  33. Takeuchi, M., Hamana, K. & Hiraishi, A.(2001). Proposal of the genus Sphingomonassensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417. [Google Scholar]
  34. Tiirola, M. A., Männistö, M. K., Puhakka, J. A. & Kulomaa, M. S.(2002). Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68, 173–180.[CrossRef] [Google Scholar]
  35. Tiirola, M. A., Busse, H.-J., Kämpfer, P. & Männistö, M. K.(2005).Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55, 583–588.[CrossRef] [Google Scholar]
  36. Tindall, B. J.(1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef] [Google Scholar]
  37. Tindall, B. J.(1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef] [Google Scholar]
  38. Tschech, A. & Pfennig, N.(1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef] [Google Scholar]
  39. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H.(1990). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef] [Google Scholar]

Data & Media loading...


Comparative pigment analysis of acetone/methanol extracted carotenoids by reverse-phase HPLC for strain FSW06-204d and type strains of the genera , and . [ PDF]42 KB



This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error